ETL processes for medical and scientific papers
paperetl
is an ETL library for processing medical and scientific papers.
paperetl
supports the following sources:
- Full PDF articles
- PubMed XML
- ArXiv XML
- Text Encoding Initiative (TEI) XML
- CSV with article metadta
paperetl
supports the following datastores for parsed articles.
- SQLite
- JSON files
- YAML files
Additional optional datastores are available.
- Elasticsearch
The easiest way to install is via pip and PyPI
pip install paperetl
Python 3.10+ is supported. Using a Python virtual environment is recommended.
paperetl
can also be installed directly from GitHub to access the latest, unreleased features.
pip install git+https://github.com/neuml/paperetl
PDF parsing relies on an existing GROBID instance to be up and running. It is assumed that this is running locally on the ETL server. This is only necessary for PDF files.
Note: In some cases, the GROBID engine pool can be exhausted, resulting in a 503 error. This can be fixed by increasing concurrency
and/or poolMaxWait
in the GROBID configuration file.
A Dockerfile with commands to install paperetl
, all dependencies and scripts are available in this repository.
wget https://raw.githubusercontent.com/neuml/paperetl/master/docker/Dockerfile
docker build -t paperetl -f Dockerfile .
docker run --name paperetl --rm -it paperetl
This will bring up a paperetl
command shell. Standard Docker commands can be used to copy files over or commands can be run directly in the shell to retrieve input content.
Notebook | Description | |
---|---|---|
Introducing paperetl | Overview of the functionality provided by paperetl |
The following example shows how to use paperetl
to load a set of medical/scientific articles into a SQLite database.
-
Download the desired medical/scientific articles in a local directory. For this example, it is assumed the articles are in a directory named
paperetl/data
-
Build the database
python -m paperetl.file paperetl/data paperetl/models
Once complete, there will be an articles.sqlite file in paperetl/models
Elasticsearch is a supported datastore. It's an optional install feature via the Elasticsearch extra.
pip install paperetl[elasticsearch]
This example assumes Elasticsearch is running locally, change the URL to a remote server as appropriate.
python -m paperetl.file paperetl/data http://localhost:9200
Once complete, there will be an articles index in Elasticsearch with the metadata and full text stored.
paperetl
can also be used to convert articles into JSON or YAML files. This is useful if the data is to be fed into another system or for manual inspection/debugging of a single file.
JSON:
python -m paperetl.file paperetl/data json://paperetl/json
YAML:
python -m paperetl.file paperetl/data yaml://paperetl/yaml
Converted files will be stored in paperetl/(json|yaml)