*Equal contribution
1Shanghai Jiao Tong University, 2University of California San Diego, 3NVIDIA
To download full WildRGB-D Dataset, it totally requires approximately 3.37T disk space to store zip packages, and approximately 4T to store all data.
To download all categories, execute python download.py --cat all
.
To download specific one category, execute python download.py --cat <category_name>
.
You could check all category names in the download scripts.
WildRGB-D
├── <category_name>
│ ├── scenes
│ │ ├── scenes_<scene_id>
│ │ │ ├── rgb
│ │ │ │ ├── <frame_id>.png
│ │ │ │ |
│ │ │ ├── depth
│ │ │ │ ├── <frame_id>.png
│ │ │ │ |
│ │ │ ├── masks
│ │ │ │ ├── <frame_id>.png
│ │ │ │ |
│ │ │ ├── metadata
│ │ │ ├── cam_poses.txt
│ ├── types.json
│ ├── nvs_list.json
│ ├── camera_eval_list.json
<category_name>/scenes/scenes_<scene_id>/depth/
: We store depths in the depth scale of 1000. That is, when we load depth image and divide by 1000, we could get depth in meters.<category_name>/scenes/scenes_<scene_id>/metadata
: It stores the camera intrinsics including image width, height and K.<category_name>/scenes/scenes_<scene_id>/cam_poses.txt
: It stores the camera extrinsics. For every line, we list the <frame_id> first, then following the flatten 4x4 extrinsic matrix. Our camera extrinsics follows OpenCV convention, and it's camera to world matrix.<category_name>/types.json
: It stores the video type of every scene in<category_name>/scenes/
. It includes single object video marked in "single", multi-object video marked in "multi" and hand-object video marked in "hand".<category_name>/nvs_list.json
: It stores the training and validation split we use in our Novel View Synthesis Task. For Single-Scene NVS, we only test on val split. For Cross-Scene NVS, we pre-train on train split and test on val split.<category_name>/camera_eval_list.json
: It stores the training and validation split we use in our Camera Pose Evaluation Task.
Our WildRGB-D Dataset provides point cloud annotations. Please refer to wildrgbd_generate_point_cloud.py
.
If you have any problems when downloading and using WildRGB-D Dataset, please contact Hongchi Xia by email.