Skip to content

wuyou3474/ORTrack

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ORTrack

The official implementation for the CVPR 2025 paper [ Learning Occlusion-Robust Vision Transformers for Real-Time UAV Tracking ]

Models & Raw Results Baidu Driver Models & Raw Results Google Driver

Methodology

ORTrack

Usage

Installation

Create and activate a conda environment:

conda create -n ORTrack python=3.8
conda activate ORTrack

Install the required packages:

pip install -r requirements.txt

Data Preparation

Put the tracking datasets in ./data. It should look like:

${PROJECT_ROOT}
 -- data
     -- lasot
         |-- airplane
         |-- basketball
         |-- bear
         ...
     -- got10k
         |-- test
         |-- train
         |-- val
     -- coco
         |-- annotations
         |-- images
     -- trackingnet
         |-- TRAIN_0
         |-- TRAIN_1
         ...
         |-- TRAIN_11
         |-- TEST         

Path Setting

Run the following command to set paths:

cd <PATH_of_ORTrack>
python tracking/create_default_local_file.py --workspace_dir . --data_dir ./data --save_dir ./output

You can also modify paths by these two files:

./lib/train/admin/local.py  # paths for training
./lib/test/evaluation/local.py  # paths for testing

Training

Download pre-trained DeiT-Tiny weights, Eva02-Tiny weights , and ViT-Tiny weights and put it under `$USER_ROOT$/.cache/torch/hub/checkpoints/.

# Training ORTrack-DeiT
python tracking/train.py --script ortrack --config deit_tiny_patch16_224  --save_dir ./output --mode single

# Training ORTrack-D-DeiT
# You need to download the model weight of ORTrack-DeiT and place them under the directory $PROJECT_ROOT$/teacher_model/deit_tiny_patch16_224.
python tracking/train.py --script ortrack --config deit_tiny_distilled_patch16_224  --save_dir ./output --mode single

Testing

Download the model weights from Google Drive or BaiduNetDisk

Put the downloaded weights on <PATH_of_ORTrack>/output/checkpoints/train/ortrack/deit_tiny_patch16_224

Change the corresponding values of lib/test/evaluation/local.py to the actual benchmark saving paths

Testing examples:

  • VisDrone2018 or other off-line evaluated benchmarks (modify --dataset correspondingly)
python tracking/test.py ortrack deit_tiny_patch16_224 --dataset visdrone2018 --threads 4 --num_gpus 1
python tracking/analysis_results.py # need to modify tracker configs and names
  • BioDrone
python tracking/test.py ortrack deit_tiny_patch16_224 --dataset biodrone --threads 4 --num_gpus 1

Test FLOPs, and Params.

# Profiling ORTrack-DeiT
python tracking/profile_model.py --script ortrack --config deit_tiny_patch16_224

Acknowledgment

  • This repo is based on OSTrack and PyTracking library which are excellent works and help us to quickly implement our ideas.

  • We use the implementation of the DeiT, Eva02, and ViT from the Timm repo.

Citation

If our work is useful for your research, please consider citing:

@inproceedings{wu2025ortrack,
  title={Learning Occlusion-Robust Vision Transformers for Real-Time UAV Tracking},
  author={Wu, You and Wang, Xucheng and Yang, Xiangyang and Liu, Mengyuan and Zeng, Dan and Ye, Hengzhou and Li, Shuiwang},
  booktitle={CVPR},
  year={2025}
}

About

[CVPR 2025] Learning Occlusion-Robust Vision Transformers for Real-Time UAV Tracking

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages