Skip to content

wuhuikai/FastFCN

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation

[Project] [Paper] [arXiv] [Home]

PWC

Official implementation of FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.
A Faster, Stronger and Lighter framework for semantic segmentation, achieving the state-of-the-art performance and more than 3x acceleration.

@inproceedings{wu2019fastfcn,
  title     = {FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation},
  author    = {Wu, Huikai and Zhang, Junge and Huang, Kaiqi and Liang, Kongming and Yu Yizhou},
  booktitle = {arXiv preprint arXiv:1903.11816},
  year = {2019}
}

Contact: Hui-Kai Wu (huikaiwu@icloud.com)

Update

2020-02-18: FastFCN can now run on every OS with PyTorch>=1.1.0 and Python==3.*.*

  • Replace SyncBatchNorm with torch.nn.SyncBatchNorm.
  • Employ torch.nn.DistributedDataParallel.
  • Replace all C/C++ extensions with torch.autograd.Function extensions (Pure Python).
  • Note: Due to the introduction of torch.nn.DistributedDataParallel, the performance (mIoU) is lower than v1.0.0 under the same hyper-parameter configurations [PContext-ResNet50-Encoding: 50.95% v.s. 51.05%]. Pull requests are welcome to address the issue.

Overview

Framework

Joint Pyramid Upsampling (JPU)

Install

  1. PyTorch >= 1.1.0 (Note: The code is test in the environment with python=3.6, cuda=9.0)
  2. Download FastFCN
    git clone https://github.com/wuhuikai/FastFCN.git
    cd FastFCN
    
  3. Install Requirements
    nose
    tqdm
    scipy
    cython
    requests
    

Train and Test

PContext

python -m scripts.prepare_pcontext
Method Backbone mIoU FPS Model Scripts
EncNet ResNet-50 49.91 18.77
EncNet+JPU (ours) ResNet-50 51.05 37.56 GoogleDrive bash
PSP ResNet-50 50.58 18.08
PSP+JPU (ours) ResNet-50 50.89 28.48 GoogleDrive bash
DeepLabV3 ResNet-50 49.19 15.99
DeepLabV3+JPU (ours) ResNet-50 50.07 20.67 GoogleDrive bash
EncNet ResNet-101 52.60 (MS) 10.51
EncNet+JPU (ours) ResNet-101 54.03 (MS) 32.02 GoogleDrive bash

ADE20K

python -m scripts.prepare_ade20k

Training Set

Method Backbone mIoU (MS) Model Scripts
EncNet ResNet-50 41.11
EncNet+JPU (ours) ResNet-50 42.75 GoogleDrive bash
EncNet ResNet-101 44.65
EncNet+JPU (ours) ResNet-101 44.34 GoogleDrive bash

Training Set + Val Set

Method Backbone FinalScore (MS) Model Scripts
EncNet+JPU (ours) ResNet-50 GoogleDrive bash
EncNet ResNet-101 55.67
EncNet+JPU (ours) ResNet-101 55.84 GoogleDrive bash

Note: EncNet (ResNet-101) is trained with crop_size=576, while EncNet+JPU (ResNet-101) is trained with crop_size=480 for fitting 4 images into a 12G GPU.

Visual Results

Dataset Input GT EncNet Ours
PContext
ADE20K

Acknowledgement

Code borrows heavily from PyTorch-Encoding.

About

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •