Skip to content

Conversation

zyfzjsc988
Copy link
Contributor

What does this PR do?

fix : batch size and the size of raw_prompt unmatching when setting data.return_raw_chat=True

fix bug when using data.return_raw_chat=True in GRPO algorithm with reward model:
File "/ossfs/workspace/repository/verl/verl/single_controller/ray/base.py", line 625, in func return getattr(self.worker_dict[key], name)(*args, **kwargs) File "/ossfs/workspace/repository/verl/verl/single_controller/base/decorator.py", line 534, in inner return func(*args, **kwargs) File "/ossfs/workspace/repository/verl/verl/workers/fsdp_workers.py", line 634, in generate_sequences output = self.rollout.generate_sequences(prompts=prompts) File "/ossfs/workspace/repository/verl/verl/utils/debug/performance.py", line 78, in f return self.log(decorated_function, *args, **kwargs) File "/ossfs/workspace/repository/verl/verl/utils/debug/performance.py", line 88, in log output = func(*args, **kwargs) File "/opt/conda/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context return func(*args, **kwargs) File "/ossfs/workspace/repository/verl/verl/workers/rollout/vllm_rollout/vllm_rollout_spmd.py", line 346, in generate_sequences return DataProto(batch=batch, non_tensor_batch=non_tensor_batch) File "<string>", line 6, in __init__ File "/ossfs/workspace/repository/verl/verl/protocol.py", line 214, in __post_init__ self.check_consistency() File "/ossfs/workspace/repository/verl/verl/protocol.py", line 325, in check_consistency assert val.shape[0] == batch_size, f"key {key} length {len(val)} is not equal to batch size {batch_size}" AssertionError: key raw_prompt length 128 is not equal to batch size 640

Checklist Before Starting

  • Search for similar PRs. Paste at least one query link here: ...
  • Format the PR title as [{modules}] {type}: {description} (This will be checked by the CI)
    • {modules} include fsdp, megatron, sglang, vllm, rollout, trainer, ci, training_utils, recipe, hardware, deployment, ray, worker, single_controller, misc, perf, model, algo, env, tool, ckpt, doc, data
    • If this PR involves multiple modules, separate them with , like [megatron, fsdp, doc]
    • {type} is in feat, fix, refactor, chore, test
    • If this PR breaks any API (CLI arguments, config, function signature, etc.), add [BREAKING] to the beginning of the title.
    • Example: [BREAKING][fsdp, megatron] feat: dynamic batching

Test

For changes that can not be tested by CI (e.g., algorithm implementation, new model support), validate by experiment(s) and show results like training curve plots, evaluation results, etc.

API and Usage Example

Demonstrate how the API changes if any, and provide usage example(s) if possible.

# Add code snippet or script demonstrating how to use this

High-Level Design

Demonstrate the high-level design if this PR is complex.

Specific Changes

List the specific changes.

Checklist Before Submitting

Important

Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review.

when using `data.return_raw_chat=True` in GRPO algorithm with reward model
error raise:
File "/ossfs/workspace/repository/verl/verl/workers/rollout/vllm_rollout/vllm_rollout_spmd.py", line 346, in generate_sequences
    return DataProto(batch=batch, non_tensor_batch=non_tensor_batch)
  File "<string>", line 6, in __init__
  File "/ossfs/workspace/repository/verl/verl/protocol.py", line 214, in __post_init__
    self.check_consistency()
  File "/ossfs/workspace/repository/verl/verl/protocol.py", line 325, in check_consistency
    assert val.shape[0] == batch_size, f"key {key} length {len(val)} is not equal to batch size {batch_size}"
AssertionError: key raw_prompt length 128 is not equal to batch size 640
@vermouth1992 vermouth1992 merged commit d69528f into volcengine:main Jun 23, 2025
1 check passed
Sirius-L1 pushed a commit to Sirius-L1/verl that referenced this pull request Jun 24, 2025
…ine#2156)

### What does this PR do?

> fix : batch size and the size of raw_prompt unmatching when setting
`data.return_raw_chat=True`

fix bug when using `data.return_raw_chat=True` in GRPO algorithm with
reward model:
` File
"/ossfs/workspace/repository/verl/verl/single_controller/ray/base.py",
line 625, in func
    return getattr(self.worker_dict[key], name)(*args, **kwargs)
File
"/ossfs/workspace/repository/verl/verl/single_controller/base/decorator.py",
line 534, in inner
    return func(*args, **kwargs)
File "/ossfs/workspace/repository/verl/verl/workers/fsdp_workers.py",
line 634, in generate_sequences
    output = self.rollout.generate_sequences(prompts=prompts)
File "/ossfs/workspace/repository/verl/verl/utils/debug/performance.py",
line 78, in f
    return self.log(decorated_function, *args, **kwargs)
File "/ossfs/workspace/repository/verl/verl/utils/debug/performance.py",
line 88, in log
    output = func(*args, **kwargs)
File
"/opt/conda/lib/python3.10/site-packages/torch/utils/_contextlib.py",
line 116, in decorate_context
    return func(*args, **kwargs)
File
"/ossfs/workspace/repository/verl/verl/workers/rollout/vllm_rollout/vllm_rollout_spmd.py",
line 346, in generate_sequences
    return DataProto(batch=batch, non_tensor_batch=non_tensor_batch)
  File "<string>", line 6, in __init__
File "/ossfs/workspace/repository/verl/verl/protocol.py", line 214, in
__post_init__
    self.check_consistency()
File "/ossfs/workspace/repository/verl/verl/protocol.py", line 325, in
check_consistency
assert val.shape[0] == batch_size, f"key {key} length {len(val)} is not
equal to batch size {batch_size}"
AssertionError: key raw_prompt length 128 is not equal to batch size
640`


### Checklist Before Starting

- [ ] Search for similar PRs. Paste at least one query link here: ...
- [ ] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`,
`trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`,
`ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`,
`env`, `tool`, `ckpt`, `doc`, `data`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

> For changes that can not be tested by CI (e.g., algorithm
implementation, new model support), validate by experiment(s) and show
results like training curve plots, evaluation results, etc.

### API and Usage Example

> Demonstrate how the API changes if any, and provide usage example(s)
if possible.

```python
# Add code snippet or script demonstrating how to use this
```

### High-Level Design

> Demonstrate the high-level design if this PR is complex.

### Specific Changes

> List the specific changes.

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [ ] Read the [Contribute
Guide](https://github.com/volcengine/verl?tab=readme-ov-file#contribution-guide).
- [ ] Apply [pre-commit
checks](https://github.com/volcengine/verl?tab=readme-ov-file#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [ ] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [ ] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [ ] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
Tyizhanshen pushed a commit to HyperdriveHustle/verl that referenced this pull request Jul 1, 2025
…ine#2156)

### What does this PR do?

> fix : batch size and the size of raw_prompt unmatching when setting
`data.return_raw_chat=True`

fix bug when using `data.return_raw_chat=True` in GRPO algorithm with
reward model:
` File
"/ossfs/workspace/repository/verl/verl/single_controller/ray/base.py",
line 625, in func
    return getattr(self.worker_dict[key], name)(*args, **kwargs)
File
"/ossfs/workspace/repository/verl/verl/single_controller/base/decorator.py",
line 534, in inner
    return func(*args, **kwargs)
File "/ossfs/workspace/repository/verl/verl/workers/fsdp_workers.py",
line 634, in generate_sequences
    output = self.rollout.generate_sequences(prompts=prompts)
File "/ossfs/workspace/repository/verl/verl/utils/debug/performance.py",
line 78, in f
    return self.log(decorated_function, *args, **kwargs)
File "/ossfs/workspace/repository/verl/verl/utils/debug/performance.py",
line 88, in log
    output = func(*args, **kwargs)
File
"/opt/conda/lib/python3.10/site-packages/torch/utils/_contextlib.py",
line 116, in decorate_context
    return func(*args, **kwargs)
File
"/ossfs/workspace/repository/verl/verl/workers/rollout/vllm_rollout/vllm_rollout_spmd.py",
line 346, in generate_sequences
    return DataProto(batch=batch, non_tensor_batch=non_tensor_batch)
  File "<string>", line 6, in __init__
File "/ossfs/workspace/repository/verl/verl/protocol.py", line 214, in
__post_init__
    self.check_consistency()
File "/ossfs/workspace/repository/verl/verl/protocol.py", line 325, in
check_consistency
assert val.shape[0] == batch_size, f"key {key} length {len(val)} is not
equal to batch size {batch_size}"
AssertionError: key raw_prompt length 128 is not equal to batch size
640`


### Checklist Before Starting

- [ ] Search for similar PRs. Paste at least one query link here: ...
- [ ] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`,
`trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`,
`ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`,
`env`, `tool`, `ckpt`, `doc`, `data`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

> For changes that can not be tested by CI (e.g., algorithm
implementation, new model support), validate by experiment(s) and show
results like training curve plots, evaluation results, etc.

### API and Usage Example

> Demonstrate how the API changes if any, and provide usage example(s)
if possible.

```python
# Add code snippet or script demonstrating how to use this
```

### High-Level Design

> Demonstrate the high-level design if this PR is complex.

### Specific Changes

> List the specific changes.

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [ ] Read the [Contribute
Guide](https://github.com/volcengine/verl?tab=readme-ov-file#contribution-guide).
- [ ] Apply [pre-commit
checks](https://github.com/volcengine/verl?tab=readme-ov-file#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [ ] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [ ] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [ ] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
oseyosey pushed a commit to oseyosey/verl that referenced this pull request Jul 28, 2025
…ine#2156)

### What does this PR do?

> fix : batch size and the size of raw_prompt unmatching when setting
`data.return_raw_chat=True`

fix bug when using `data.return_raw_chat=True` in GRPO algorithm with
reward model:
` File
"/ossfs/workspace/repository/verl/verl/single_controller/ray/base.py",
line 625, in func
    return getattr(self.worker_dict[key], name)(*args, **kwargs)
File
"/ossfs/workspace/repository/verl/verl/single_controller/base/decorator.py",
line 534, in inner
    return func(*args, **kwargs)
File "/ossfs/workspace/repository/verl/verl/workers/fsdp_workers.py",
line 634, in generate_sequences
    output = self.rollout.generate_sequences(prompts=prompts)
File "/ossfs/workspace/repository/verl/verl/utils/debug/performance.py",
line 78, in f
    return self.log(decorated_function, *args, **kwargs)
File "/ossfs/workspace/repository/verl/verl/utils/debug/performance.py",
line 88, in log
    output = func(*args, **kwargs)
File
"/opt/conda/lib/python3.10/site-packages/torch/utils/_contextlib.py",
line 116, in decorate_context
    return func(*args, **kwargs)
File
"/ossfs/workspace/repository/verl/verl/workers/rollout/vllm_rollout/vllm_rollout_spmd.py",
line 346, in generate_sequences
    return DataProto(batch=batch, non_tensor_batch=non_tensor_batch)
  File "<string>", line 6, in __init__
File "/ossfs/workspace/repository/verl/verl/protocol.py", line 214, in
__post_init__
    self.check_consistency()
File "/ossfs/workspace/repository/verl/verl/protocol.py", line 325, in
check_consistency
assert val.shape[0] == batch_size, f"key {key} length {len(val)} is not
equal to batch size {batch_size}"
AssertionError: key raw_prompt length 128 is not equal to batch size
640`


### Checklist Before Starting

- [ ] Search for similar PRs. Paste at least one query link here: ...
- [ ] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`,
`trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`,
`ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`,
`env`, `tool`, `ckpt`, `doc`, `data`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

> For changes that can not be tested by CI (e.g., algorithm
implementation, new model support), validate by experiment(s) and show
results like training curve plots, evaluation results, etc.

### API and Usage Example

> Demonstrate how the API changes if any, and provide usage example(s)
if possible.

```python
# Add code snippet or script demonstrating how to use this
```

### High-Level Design

> Demonstrate the high-level design if this PR is complex.

### Specific Changes

> List the specific changes.

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [ ] Read the [Contribute
Guide](https://github.com/volcengine/verl?tab=readme-ov-file#contribution-guide).
- [ ] Apply [pre-commit
checks](https://github.com/volcengine/verl?tab=readme-ov-file#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [ ] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [ ] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [ ] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
whatadayG pushed a commit to whatadayG/verl that referenced this pull request Sep 5, 2025
…ine#2156)

### What does this PR do?

> fix : batch size and the size of raw_prompt unmatching when setting
`data.return_raw_chat=True`

fix bug when using `data.return_raw_chat=True` in GRPO algorithm with
reward model:
` File
"/ossfs/workspace/repository/verl/verl/single_controller/ray/base.py",
line 625, in func
    return getattr(self.worker_dict[key], name)(*args, **kwargs)
File
"/ossfs/workspace/repository/verl/verl/single_controller/base/decorator.py",
line 534, in inner
    return func(*args, **kwargs)
File "/ossfs/workspace/repository/verl/verl/workers/fsdp_workers.py",
line 634, in generate_sequences
    output = self.rollout.generate_sequences(prompts=prompts)
File "/ossfs/workspace/repository/verl/verl/utils/debug/performance.py",
line 78, in f
    return self.log(decorated_function, *args, **kwargs)
File "/ossfs/workspace/repository/verl/verl/utils/debug/performance.py",
line 88, in log
    output = func(*args, **kwargs)
File
"/opt/conda/lib/python3.10/site-packages/torch/utils/_contextlib.py",
line 116, in decorate_context
    return func(*args, **kwargs)
File
"/ossfs/workspace/repository/verl/verl/workers/rollout/vllm_rollout/vllm_rollout_spmd.py",
line 346, in generate_sequences
    return DataProto(batch=batch, non_tensor_batch=non_tensor_batch)
  File "<string>", line 6, in __init__
File "/ossfs/workspace/repository/verl/verl/protocol.py", line 214, in
__post_init__
    self.check_consistency()
File "/ossfs/workspace/repository/verl/verl/protocol.py", line 325, in
check_consistency
assert val.shape[0] == batch_size, f"key {key} length {len(val)} is not
equal to batch size {batch_size}"
AssertionError: key raw_prompt length 128 is not equal to batch size
640`


### Checklist Before Starting

- [ ] Search for similar PRs. Paste at least one query link here: ...
- [ ] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`,
`trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`,
`ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`,
`env`, `tool`, `ckpt`, `doc`, `data`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

> For changes that can not be tested by CI (e.g., algorithm
implementation, new model support), validate by experiment(s) and show
results like training curve plots, evaluation results, etc.

### API and Usage Example

> Demonstrate how the API changes if any, and provide usage example(s)
if possible.

```python
# Add code snippet or script demonstrating how to use this
```

### High-Level Design

> Demonstrate the high-level design if this PR is complex.

### Specific Changes

> List the specific changes.

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [ ] Read the [Contribute
Guide](https://github.com/volcengine/verl?tab=readme-ov-file#contribution-guide).
- [ ] Apply [pre-commit
checks](https://github.com/volcengine/verl?tab=readme-ov-file#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [ ] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [ ] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [ ] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants