-
Notifications
You must be signed in to change notification settings - Fork 2.3k
[recipe] feat: char count #1908
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
vermouth1992
merged 14 commits into
volcengine:main
from
vermouth1992:chi/dev/char_count
Jun 8, 2025
Merged
Changes from all commits
Commits
Show all changes
14 commits
Select commit
Hold shift + click to select a range
f22e191
add create dataset
vermouth1992 c40f02c
update
vermouth1992 80ab7a0
add grpo script
vermouth1992 69fca93
update reward function
vermouth1992 f53cfec
update
vermouth1992 531d3cf
update
vermouth1992 0b095a2
make dataset harder
vermouth1992 360d2ac
Merge branch 'main' into chi/dev/char_count
vermouth1992 6d4e10c
update
vermouth1992 e3f6f45
update
vermouth1992 5b8192c
update
vermouth1992 0721c1b
remove eval script
vermouth1992 d7c3921
update readme
vermouth1992 95333a0
add license
vermouth1992 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,41 @@ | ||
# Char Count | ||
## Introduction | ||
Char count is a simple NLP task. We create it for beginners to grasp the idea of RLVR. The task can be trained using a tiny model (e.g., https://huggingface.co/HuggingFaceTB/SmolLM2-135M) on a consumer GPU with only 8GB. | ||
|
||
## Problem formulation | ||
The prompt is: "How many {char} are there in {word}?". In order for LLM to better answer this question, we create SFT dataset with intermediate steps. For example, | ||
|
||
```text | ||
Question: How many n are there in n-i-n-e? | ||
Answer: | ||
n = n | ||
i != n | ||
n = n | ||
e != n | ||
\boxed{2} | ||
``` | ||
|
||
Note that | ||
- We add a dash between each individual char to make the task easier because each individual char will be tokenized to the same token by most tokenizer. | ||
- In the SFT dataset, we create a CoT by listing all the individual chars and whether it equals to the target. In the end, it outputs the final answer inside the box. | ||
- The task can be verified. | ||
- The word is not always meaningful. Each char is sampled uniformly from a to z. We make the total length and the answer uniformly distributed within a range. | ||
|
||
## Scripts | ||
To create the dataset, run | ||
```bash | ||
python3 create_dataset.py | ||
``` | ||
We create a train set and a val set. Both of them are used of SFT and RL. You can specify the total number of data, min/max length and data path. | ||
|
||
To run the SFT | ||
```bash | ||
bash train_sft.sh | ||
``` | ||
We train SFT for 3 epochs. After 3 epochs, the validation score is around 0.12. | ||
|
||
To run GRPO | ||
```bash | ||
bash train_grpo.sh | ||
``` | ||
We train GRPO for 2 epochs. After 2 epochs, the validation score is around 0.36. |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,187 @@ | ||
# Copyright 2024 Bytedance Ltd. and/or its affiliates | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
""" | ||
Task description: | ||
Given a random word and a random char, count the number of occurrence of char in the word. | ||
|
||
Create CoT dataset that split the word into separate char. Then list the char and count the occurrence. | ||
|
||
The word set comes from shakespeare | ||
""" | ||
|
||
import os.path | ||
import random | ||
|
||
prompt_template = "How many {} are there in word {}?" | ||
|
||
|
||
def generate_random_char(): | ||
return chr(97 + random.randint(0, 25)) | ||
|
||
|
||
def create_prompt_response(min_length=3, max_length=5): | ||
# randomly generate a length | ||
word_length = random.randint(min_length, max_length) | ||
# randomly generate a target count number. This makes the target number | ||
target_count_number = random.randint(1, word_length) | ||
|
||
char_lst = [] | ||
# generate the word | ||
# step 1: generate the target word | ||
target_char = generate_random_char() | ||
|
||
for _ in range(target_count_number): | ||
char_lst.append(target_char) | ||
|
||
# step 2: generate other words | ||
for _ in range(word_length - target_count_number): | ||
while True: | ||
char = generate_random_char() | ||
if char != target_char: | ||
char_lst.append(char) | ||
break | ||
|
||
# step 3: random permute char_lst | ||
random.shuffle(char_lst) | ||
|
||
word = "-".join(char_lst) | ||
|
||
prompt = prompt_template.format(target_char, word) | ||
final_answer = [] | ||
|
||
# cot | ||
number = 0 | ||
for i, char in enumerate(char_lst): | ||
cot = f"{char}" | ||
if char != target_char: | ||
cot += " != " | ||
else: | ||
cot += " = " | ||
number += 1 | ||
cot += f"{target_char}." | ||
|
||
final_answer.append(cot) | ||
|
||
conclusion = f"\\boxed{{{number}}} {target_char} in {word}." | ||
|
||
final_answer.append(conclusion) | ||
|
||
final_answer = "\n".join(final_answer) | ||
|
||
return prompt, final_answer | ||
|
||
|
||
if __name__ == "__main__": | ||
import argparse | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--total_number", type=int, default=10000) | ||
parser.add_argument("--min_length", type=int, default=5) | ||
parser.add_argument("--max_length", type=int, default=20) | ||
parser.add_argument("--data_path", type=str, default="~/data/char_count") | ||
|
||
args = vars(parser.parse_args()) | ||
|
||
total_number = args["total_number"] | ||
min_length = args["min_length"] | ||
max_length = args["max_length"] | ||
data_path = args["data_path"] | ||
data_path = os.path.expanduser(data_path) | ||
|
||
full_output = [] | ||
for _ in range(total_number): | ||
output = create_prompt_response(min_length=min_length, max_length=max_length) | ||
full_output.append(output) | ||
|
||
# random reorder | ||
random.shuffle(full_output) | ||
|
||
# split for train and test | ||
train_split_len = int(0.9 * len(full_output)) | ||
train_outputs = full_output[:train_split_len] | ||
test_output = full_output[train_split_len:] | ||
|
||
sft_train_dataset = {"prompt": [], "response": []} | ||
|
||
for o in train_outputs: | ||
sft_train_dataset["prompt"].append(o[0]) | ||
sft_train_dataset["response"].append(o[1]) | ||
|
||
sft_test_dataset = {"prompt": [], "response": []} | ||
|
||
for o in test_output: | ||
sft_test_dataset["prompt"].append(o[0]) | ||
sft_test_dataset["response"].append(o[1]) | ||
|
||
import pandas as pd | ||
|
||
sft_train_dataset = pd.DataFrame(data=sft_train_dataset) | ||
sft_test_dataset = pd.DataFrame(data=sft_test_dataset) | ||
|
||
folder = os.path.join(data_path, "sft") | ||
|
||
os.makedirs(folder, exist_ok=True) | ||
|
||
sft_train_dataset.to_parquet(os.path.join(folder, "train.parquet")) | ||
sft_test_dataset.to_parquet(os.path.join(folder, "test.parquet")) | ||
|
||
# build RL dataset | ||
rl_train_dataset = {"prompt": [], "data_source": [], "ability": [], "reward_model": [], "extra_info": []} | ||
|
||
rl_test_dataset = {"prompt": [], "data_source": [], "ability": [], "reward_model": [], "extra_info": []} | ||
|
||
from verl.utils.reward_score.math import last_boxed_only_string, remove_boxed | ||
|
||
for o in train_outputs: | ||
prompt = o[0] | ||
response = o[1] | ||
prompt_with_template = [ | ||
{ | ||
"role": "user", | ||
"content": prompt, | ||
} | ||
] | ||
|
||
rl_train_dataset["prompt"].append(prompt_with_template) | ||
rl_train_dataset["data_source"].append("char_count") | ||
rl_train_dataset["ability"].append("other") | ||
rl_train_dataset["reward_model"].append({"style": "rule", "ground_truth": remove_boxed(last_boxed_only_string(response))}) | ||
rl_train_dataset["extra_info"].append({"response": response}) | ||
|
||
for o in test_output: | ||
prompt = o[0] | ||
response = o[1] | ||
prompt_with_template = [ | ||
{ | ||
"role": "user", | ||
"content": prompt, | ||
} | ||
] | ||
|
||
rl_test_dataset["prompt"].append(prompt_with_template) | ||
rl_test_dataset["data_source"].append("char_count") | ||
rl_test_dataset["ability"].append("other") | ||
rl_test_dataset["reward_model"].append({"style": "rule", "ground_truth": remove_boxed(last_boxed_only_string(response))}) | ||
rl_test_dataset["extra_info"].append({"response": response}) | ||
|
||
rl_train_dataset = pd.DataFrame(data=rl_train_dataset) | ||
rl_test_dataset = pd.DataFrame(data=rl_test_dataset) | ||
|
||
folder = os.path.join(data_path, "rl") | ||
|
||
os.makedirs(folder, exist_ok=True) | ||
|
||
rl_train_dataset.to_parquet(os.path.join(folder, "train.parquet")) | ||
rl_test_dataset.to_parquet(os.path.join(folder, "test.parquet")) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
# Copyright 2024 Bytedance Ltd. and/or its affiliates | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
""" | ||
Reward function | ||
""" | ||
|
||
from verl.utils.reward_score import math | ||
|
||
|
||
def char_count_reward_function(data_source, solution_str, ground_truth, extra_info=None): | ||
try: | ||
last_boxed_string = math.last_boxed_only_string(solution_str) | ||
if last_boxed_string is None: | ||
return 0 | ||
solution = math.remove_boxed(last_boxed_string) | ||
if solution == ground_truth: | ||
return 1 | ||
else: | ||
return 0 | ||
except Exception: | ||
print(ground_truth, solution_str) | ||
return 0 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
set -x | ||
|
||
#export VLLM_ATTENTION_BACKEND=XFORMERS | ||
|
||
python3 -m verl.trainer.main_ppo \ | ||
algorithm.adv_estimator=grpo \ | ||
data.train_files=$HOME/data/char_count/rl/train.parquet \ | ||
data.val_files=$HOME/data/char_count/rl/test.parquet \ | ||
data.train_batch_size=128 \ | ||
data.max_prompt_length=128 \ | ||
data.max_response_length=128 \ | ||
data.filter_overlong_prompts=False \ | ||
data.truncation='error' \ | ||
actor_rollout_ref.model.path=./models/sft/global_step_105 \ | ||
actor_rollout_ref.actor.optim.lr=1e-6 \ | ||
actor_rollout_ref.model.use_remove_padding=True \ | ||
actor_rollout_ref.actor.ppo_mini_batch_size=16 \ | ||
actor_rollout_ref.actor.use_dynamic_bsz=True \ | ||
actor_rollout_ref.actor.ppo_max_token_len_per_gpu=5000 \ | ||
actor_rollout_ref.actor.use_kl_loss=False \ | ||
actor_rollout_ref.actor.kl_loss_coef=0.0 \ | ||
actor_rollout_ref.actor.kl_loss_type=low_var_kl \ | ||
actor_rollout_ref.actor.entropy_coeff=0 \ | ||
actor_rollout_ref.model.enable_gradient_checkpointing=True \ | ||
actor_rollout_ref.actor.fsdp_config.param_offload=True \ | ||
actor_rollout_ref.actor.fsdp_config.optimizer_offload=True \ | ||
actor_rollout_ref.rollout.tensor_model_parallel_size=1 \ | ||
actor_rollout_ref.rollout.name=vllm \ | ||
actor_rollout_ref.rollout.gpu_memory_utilization=0.7 \ | ||
actor_rollout_ref.rollout.n=8 \ | ||
actor_rollout_ref.ref.fsdp_config.param_offload=True \ | ||
algorithm.use_kl_in_reward=False \ | ||
trainer.critic_warmup=0 \ | ||
trainer.logger=['console','tensorboard'] \ | ||
trainer.project_name='verl_example' \ | ||
trainer.experiment_name='smol135m_grpo' \ | ||
trainer.val_before_train=True \ | ||
trainer.n_gpus_per_node=1 \ | ||
trainer.nnodes=1 \ | ||
trainer.save_freq=-1 \ | ||
trainer.test_freq=5 \ | ||
trainer.total_epochs=2 \ | ||
custom_reward_function.path=/home/chi/Developer/verl/recipe/char_count/reward_function.py \ | ||
custom_reward_function.name=char_count_reward_function |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
set -x | ||
|
||
nproc_per_node=1 | ||
save_path=./models/sft | ||
|
||
torchrun --standalone --nnodes=1 --nproc_per_node=$nproc_per_node \ | ||
-m verl.trainer.fsdp_sft_trainer \ | ||
data.train_files=$HOME/data/char_count/sft/train.parquet \ | ||
data.val_files=$HOME/data/char_count/sft/test.parquet \ | ||
data.prompt_key=prompt \ | ||
data.response_key=response \ | ||
data.micro_batch_size_per_gpu=8 \ | ||
data.max_length=256 \ | ||
data.train_batch_size=256 \ | ||
use_remove_padding=True \ | ||
model.partial_pretrain=$HOME/models/SmolLM2-135M-Instruct \ | ||
trainer.default_local_dir=$save_path \ | ||
trainer.project_name=char_count-sft \ | ||
trainer.experiment_name=char_count-sft-SmolLM2-135M-Instruct \ | ||
trainer.total_epochs=3 \ | ||
trainer.logger=['console'] \ | ||
trainer.default_hdfs_dir=null |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
is this intentional? this would be a breaking change