Skip to content

[Bug?] vLLMRollout.generate_sequences Randomly Hangs After 1-2 Steps When trying to Implement Tool Calling with Logits Processors #340

@AIBionics

Description

@AIBionics

I've tried the method of vLLMRollout.generate_sequences to implement tool calling with verl 0.2 and vllm 0.6.3, However, it randomly hangs after running for 1 to 2 steps. Specifically, the GPU utilization gets stuck at 100%, while the power consumption drops significantly low, and the logs stop updating.

Below is the code snippet I used:

my_tool_processor = FunctionProcessor(self.tokenizer)
sampling_params.logits_processors = [my_tool_processor]
class FunctionProcessor:
    def __init__(
        self,
        tokenizer,
        start_tag: str = "<tool_call>",
        end_tag: str = "</tool_call>",
        result_start: str = "\n<tool_result>\n",
        result_end: str = "\n</tool_result>\n<think>"
    ):
        self.tokenizer = tokenizer
        self.buffer = []
        self.in_function = False
        self.current_function = []
        
        # Pre-tokenize markers 
        self.start_marker = tokenizer.encode(start_tag, add_special_tokens=False)[0]
        self.end_marker = tokenizer.encode(end_tag, add_special_tokens=False)[0]
        self.result_start = tokenizer.encode(result_start, add_special_tokens=False)
        self.result_end = tokenizer.encode(result_end, add_special_tokens=False)

        self.result_tokens = []
        self.state_dict = {}
    
    
    def evaluate_expression(self, expr: str) -> str:
        try:
            # get_tool_resp is the function that will be called to evaluate the expression, time cost no more than 3 seconds.
            result = get_tool_resp(expr)

            return str(result)
        except Exception as e:
            return f"Error: {str(e)}"
        

    
    def __call__(self, input_ids: List[int], scores: torch.Tensor) -> torch.Tensor:
        try:
            if input_ids[-1] == self.end_marker:
                idx = 1
                while idx <= len(input_ids):

                    if input_ids[-idx] == self.start_marker:

                        if input_ids[-idx:].count(self.start_marker) > 1 or input_ids[-idx:].count(self.end_marker) > 1:
                            break
                        
                        current_function = input_ids[-idx:]
                        func_text = self.tokenizer.decode(current_function)
                        try:
                            result = self.evaluate_expression(func_text)
                        except:
                            result = "{'result': 'Tool Call Error'}"
                        result_tokens = list(reversed(
                            self.result_start +
                            self.tokenizer.encode(str(result)) +
                            self.result_end
                        ))
                        state_dict_key = tuple(input_ids)
                        
                        self.state_dict[state_dict_key] = result_tokens
                        token_id = self.state_dict[state_dict_key].pop()
                        scores[token_id] = 100
                        break
                        
                    idx += 1
            else:
                for idx in range(1, len(self.end_marker)):
                    if input_ids[-idx] == self.start_marker:
                        state_dict_key = tuple(input_ids[:-idx + 1])
                        result_tokens = self.state_dict.get(state_dict_key, [])
                        if result_tokens:
                            self.state_dict[state_dict_key] = result_tokens
                            token_id = self.state_dict[state_dict_key].pop()
                            scores[token_id] = 100

                        break
            
        except Exception as e:
            print(f"Error in FunctionProcessor: {e}")
        return scores

Env

PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 20.04.5 LTS (x86_64)
GCC version: (GCC) 12.2.0
Clang version: 3.8.0 (tags/RELEASE_380/final)
CMake version: Could not collect
Libc version: glibc-2.31

Python version: 3.11.3 (main, Apr  5 2023, 14:15:06) [GCC 9.4.0] (64-bit runtime)
Python platform: Linux-5.10.0-2.0.0.2-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 12.4.99
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: CF-NG-HZZ1-O
GPU 1: CF-NG-HZZ1-O
GPU 2: CF-NG-HZZ1-O
GPU 3: CF-NG-HZZ1-O
GPU 4: CF-NG-HZZ1-O
GPU 5: CF-NG-HZZ1-O
GPU 6: CF-NG-HZZ1-O
GPU 7: CF-NG-HZZ1-O

Nvidia driver version: 535.183.06
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.0.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Byte Order:                      Little Endian
Address sizes:                   52 bits physical, 57 bits virtual
CPU(s):                          192
On-line CPU(s) list:             0-191
Thread(s) per core:              2
Core(s) per socket:              48
Socket(s):                       2
NUMA node(s):                    2
Vendor ID:                       GenuineIntel
CPU family:                      6
Model:                           143
Model name:                      Intel(R) Xeon(R) Platinum 8468V
Stepping:                        8
CPU MHz:                         2900.000
CPU max MHz:                     3800.0000
CPU min MHz:                     800.0000
BogoMIPS:                        4800.00
Virtualization:                  VT-x
L1d cache:                       4.5 MiB
L1i cache:                       3 MiB
L2 cache:                        192 MiB
L3 cache:                        195 MiB
NUMA node0 CPU(s):               0-47,96-143
NUMA node1 CPU(s):               48-95,144-191
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:              Not affected
Vulnerability Mds:               Not affected
Vulnerability Meltdown:          Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1:        Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers
Vulnerability Spectre v2:        Vulnerable, IBPB: disabled, STIBP: disabled
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Not affected
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hfi avx512vbmi umip pku waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] pyzmq==26.2.1
[pip3] torch==2.4.0
[pip3] torchaudio==2.5.1
[pip3] torchvision==0.19.0
[pip3] transformers==4.47.1
[pip3] triton==3.0.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: N/A (dev)
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    NIC0    NIC1    NIC2    NIC3    NIC4    NIC5    NIC6    NIC7    NIC8    NIC9    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      NV18    NV18    NV18    NV18    NV18    NV18    NV18    NODE    NODE    NODE    NODE    NODE    PIX     SYS     SYS     SYS     SYS     0-47,96-143     0               N/A
GPU1    NV18     X      NV18    NV18    NV18    NV18    NV18    NV18    NODE    NODE    NODE    NODE    PIX     NODE    SYS     SYS     SYS     SYS     0-47,96-143     0               N/A
GPU2    NV18    NV18     X      NV18    NV18    NV18    NV18    NV18    NODE    NODE    NODE    PIX     NODE    NODE    SYS     SYS     SYS     SYS     0-47,96-143     0               N/A
GPU3    NV18    NV18    NV18     X      NV18    NV18    NV18    NV18    NODE    NODE    PIX     NODE    NODE    NODE    SYS     SYS     SYS     SYS     0-47,96-143     0               N/A
GPU4    NV18    NV18    NV18    NV18     X      NV18    NV18    NV18    SYS     SYS     SYS     SYS     SYS     SYS     NODE    PIX     NODE    NODE    48-95,144-191   1               N/A
GPU5    NV18    NV18    NV18    NV18    NV18     X      NV18    NV18    SYS     SYS     SYS     SYS     SYS     SYS     PIX     NODE    NODE    NODE    48-95,144-191   1               N/A
GPU6    NV18    NV18    NV18    NV18    NV18    NV18     X      NV18    SYS     SYS     SYS     SYS     SYS     SYS     NODE    NODE    NODE    PIX     48-95,144-191   1               N/A
GPU7    NV18    NV18    NV18    NV18    NV18    NV18    NV18     X      SYS     SYS     SYS     SYS     SYS     SYS     NODE    NODE    PIX     NODE    48-95,144-191   1               N/A
NIC0    NODE    NODE    NODE    NODE    SYS     SYS     SYS     SYS      X      PIX     NODE    NODE    NODE    NODE    SYS     SYS     SYS     SYS
NIC1    NODE    NODE    NODE    NODE    SYS     SYS     SYS     SYS     PIX      X      NODE    NODE    NODE    NODE    SYS     SYS     SYS     SYS
NIC2    NODE    NODE    NODE    PIX     SYS     SYS     SYS     SYS     NODE    NODE     X      NODE    NODE    NODE    SYS     SYS     SYS     SYS
NIC3    NODE    NODE    PIX     NODE    SYS     SYS     SYS     SYS     NODE    NODE    NODE     X      NODE    NODE    SYS     SYS     SYS     SYS
NIC4    NODE    PIX     NODE    NODE    SYS     SYS     SYS     SYS     NODE    NODE    NODE    NODE     X      NODE    SYS     SYS     SYS     SYS
NIC5    PIX     NODE    NODE    NODE    SYS     SYS     SYS     SYS     NODE    NODE    NODE    NODE    NODE     X      SYS     SYS     SYS     SYS
NIC6    SYS     SYS     SYS     SYS     NODE    PIX     NODE    NODE    SYS     SYS     SYS     SYS     SYS     SYS      X      NODE    NODE    NODE
NIC7    SYS     SYS     SYS     SYS     PIX     NODE    NODE    NODE    SYS     SYS     SYS     SYS     SYS     SYS     NODE     X      NODE    NODE
NIC8    SYS     SYS     SYS     SYS     NODE    NODE    NODE    PIX     SYS     SYS     SYS     SYS     SYS     SYS     NODE    NODE     X      NODE
NIC9    SYS     SYS     SYS     SYS     NODE    NODE    PIX     NODE    SYS     SYS     SYS     SYS     SYS     SYS     NODE    NODE    NODE     X 

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0
  NIC1: mlx5_1
  NIC2: mlx5_2
  NIC3: mlx5_3
  NIC4: mlx5_4
  NIC5: mlx5_5
  NIC6: mlx5_6
  NIC7: mlx5_7
  NIC8: mlx5_8
  NIC9: mlx5_9

NVIDIA_VISIBLE_DEVICES=GPU-00c17004-1a68-8b2e-bf1f-ce4a849177c9,GPU-50c603ba-d9c5-5c24-dfa1-610ef45f5dfe,GPU-38cdf56a-4962-87b6-f54e-3c591c3b6f94,GPU-e667f094-50f7-6a86-0173-98bc170da5d4,GPU-2fe323cd-e3ae-7915-1299-542a62e79926,GPU-f2c15f28-fdbf-499d-4d81-26545c14c0fd,GPU-89fd4b88-9a9e-7e89-b4fd-820425524007,GPU-b6221a29-7a6f-d2e5-fc50-2806885da539
NCCL_P2P_DISABLE=0
NVIDIA_REQUIRE_CUDA=cuda>=12.0 brand=tesla,driver>=450,driver<451 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=510,driver<511 brand=unknown,driver>=510,driver<511 brand=nvidia,driver>=510,driver<511 brand=nvidiartx,driver>=510,driver<511 brand=geforce,driver>=510,driver<511 brand=geforcertx,driver>=510,driver<511 brand=quadro,driver>=510,driver<511 brand=quadrortx,driver>=510,driver<511 brand=titan,driver>=510,driver<511 brand=titanrtx,driver>=510,driver<511 brand=tesla,driver>=515,driver<516 brand=unknown,driver>=515,driver<516 brand=nvidia,driver>=515,driver<516 brand=nvidiartx,driver>=515,driver<516 brand=geforce,driver>=515,driver<516 brand=geforcertx,driver>=515,driver<516 brand=quadro,driver>=515,driver<516 brand=quadrortx,driver>=515,driver<516 brand=titan,driver>=515,driver<516 brand=titanrtx,driver>=515,driver<516
NCCL_IB_CUDA_SUPPORT=0
NVIDIA_LIB=/usr/local/nvidia/lib64
NCCL_VERSION=2.17.1-1
NCCL_SOCKET_IFNAME=xgbe0
NCCL_DEBUG_SUBSYS=INIT,ENV,GRAPH
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NCCL_DEBUG=INFO
NVIDIA_PRODUCT_NAME=CUDA
NCCL_IB_GID_INDEX=3
CUDA_VERSION=12.0.1
NVIDIA_TOOLS=/home/opt/cuda_tools
NCCL_DEBUG_FILE=/root/workspace/log/nccl.%h.%p.log
NCCL_IB_QPS_PER_CONNECTION=2
NCCL_IB_CONNECT_RETRY_CNT=15
NCCL_ERROR_FILE=/root/workspace/log/err.%h.%p.log
NCCL_IB_TIMEOUT=22
CUDNN_VERSION=8.9.1
LD_LIBRARY_PATH=/root/venv/lib/python3.11/site-packages/cv2/../../lib64:/usr/local/lib:/usr/local/x86_64-pc-linux-gnu/lib:/home/opt/nvidia_lib:/usr/local/cuda/lib64:/usr/lib64:/usr/local/lib:/usr/lib/x86_64-linux-gnu/
NCCL_IB_DISABLE=0
NCCL_IB_ADAPTIVE_ROUTING=1
CUDA_MODULE_LOADING=LAZY
Image Image

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions