-
-
Notifications
You must be signed in to change notification settings - Fork 10k
Closed
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of `python collect_env.py`
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.30.4
Libc version: glibc-2.35
Python version: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.4.119-19-0013_plus-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.6.77
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA GeForce RTX 4090
GPU 1: NVIDIA GeForce RTX 4090
GPU 2: NVIDIA GeForce RTX 4090
GPU 3: NVIDIA GeForce RTX 4090
GPU 4: NVIDIA GeForce RTX 4090
GPU 5: NVIDIA GeForce RTX 4090
GPU 6: NVIDIA GeForce RTX 4090
GPU 7: NVIDIA GeForce RTX 4090
Nvidia driver version: 535.171.04
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.5.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.5.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.5.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.5.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.5.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.5.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.5.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.5.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 52 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 112
On-line CPU(s) list: 0-111
Vendor ID: GenuineIntel
BIOS Vendor ID: Red Hat
Model name: Intel(R) Xeon(R) Platinum 8476C
BIOS Model name: 3.0
CPU family: 6
Model: 143
Thread(s) per core: 2
Core(s) per socket: 28
Socket(s): 2
Stepping: 6
BogoMIPS: 5200.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb ibrs_enhanced fsgsbase bmi1 hle avx2 smep bmi2 erms invpcid rtm avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx512_bf16 wbnoinvd arat avx512vbmi umip avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq movdiri movdir64b fsrm arch_capabilities
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 2.6 MiB (56 instances)
L1i cache: 1.8 MiB (56 instances)
L2 cache: 112 MiB (56 instances)
L3 cache: 195 MiB (2 instances)
NUMA node(s): 1
NUMA node0 CPU(s): 0-111
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers
Vulnerability Spectre v2: Vulnerable, IBPB: disabled, STIBP: disabled
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cudnn-frontend==1.7.0
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-dali-cuda120==1.42.0
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-modelopt==0.17.0
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvimgcodec-cu12==0.3.0.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] nvidia-pyindex==1.0.9
[pip3] onnx==1.16.2
[pip3] optree==0.13.0
[pip3] pynvml==11.4.1
[pip3] pytorch-triton==3.0.0+dedb7bdf3
[pip3] pyzmq==26.2.0
[pip3] torch==2.5.1
[pip3] torch_tensorrt==2.5.0a0
[pip3] torchprofile==0.0.4
[pip3] torchvision==0.20.1
[pip3] transformers==4.47.1
[pip3] triton==3.1.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.5
vLLM Build Flags:
CUDA Archs: 5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X PIX PIX PIX SYS SYS SYS SYS 0-111 0 N/A
GPU1 PIX X PIX PIX SYS SYS SYS SYS 0-111 0 N/A
GPU2 PIX PIX X PIX SYS SYS SYS SYS 0-111 0 N/A
GPU3 PIX PIX PIX X SYS SYS SYS SYS 0-111 0 N/A
GPU4 SYS SYS SYS SYS X PIX PIX PIX 0-111 0 N/A
GPU5 SYS SYS SYS SYS PIX X PIX PIX 0-111 0 N/A
GPU6 SYS SYS SYS SYS PIX PIX X PIX 0-111 0 N/A
GPU7 SYS SYS SYS SYS PIX PIX PIX X 0-111 0 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NVIDIA_VISIBLE_DEVICES=all
CUBLAS_VERSION=12.6.3.3
NVIDIA_REQUIRE_CUDA=cuda>=9.0
CUDA_CACHE_DISABLE=1
TORCH_CUDA_ARCH_LIST=5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX
NCCL_VERSION=2.22.3
NVIDIA_DRIVER_CAPABILITIES=compute,utility,video
NVIDIA_PRODUCT_NAME=PyTorch
CUDA_VERSION=12.6.2.004
PYTORCH_VERSION=2.5.0a0+e000cf0
PYTORCH_BUILD_NUMBER=0
CUDNN_FRONTEND_VERSION=1.7.0
CUDNN_VERSION=9.5.0.50
PYTORCH_HOME=/opt/pytorch/pytorch
LD_LIBRARY_PATH=/usr/local/lib/python3.10/dist-packages/cv2/../../lib64:/usr/local/lib/python3.10/dist-packages/torch/lib:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
NVIDIA_BUILD_ID=114410972
CUDA_DRIVER_VERSION=560.35.03
PYTORCH_BUILD_VERSION=2.5.0a0+e000cf0
CUDA_HOME=/usr/local/cuda
CUDA_HOME=/usr/local/cuda
CUDA_MODULE_LOADING=LAZY
NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS=
NVIDIA_PYTORCH_VERSION=24.10
TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1
Model Input Dumps
No response
🐛 Describe the bug
I encountered an issue when using the v1 engine of vLLM with FP8 kvCache, It seems that the issue might be related to the flash attention kernel?
Steps to reproduce
VLLM_USE_V1=1 CUDA_VISIBLE_DEVICES=0 python -m vllm.entrypoints.openai.api_server \
--model meta-llama/Llama-3.1-8B-Instruct --dtype auto \
--served-model-name llama3-8b --kv-cache-dtype fp8 --port 9314 \
--max-num-seqs 128 --gpu-memory-utilization 0.9 --max_num_batched_tokens 5048 --max-model-len 5048
Full traceback
ERROR 12-19 09:04:11 core.py:270] query and key must have the same dtype
ERROR 12-19 09:04:11 core.py:270] Traceback (most recent call last):
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/vllm/v1/engine/core.py", line 264, in run_engine_core
ERROR 12-19 09:04:11 core.py:270] engine_core.run_busy_loop()
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/vllm/v1/engine/core.py", line 302, in run_busy_loop
ERROR 12-19 09:04:11 core.py:270] outputs = self.step()
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/vllm/v1/engine/core.py", line 125, in step
ERROR 12-19 09:04:11 core.py:270] output = self.model_executor.execute_model(scheduler_output)
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/vllm/v1/executor/uniproc_executor.py", line 72, in execute_model
ERROR 12-19 09:04:11 core.py:270] output = self.worker.execute_model(scheduler_output)
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py", line 116, in decorate_context
ERROR 12-19 09:04:11 core.py:270] return func(*args, **kwargs)
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/vllm/v1/worker/gpu_worker.py", line 203, in execute_model
ERROR 12-19 09:04:11 core.py:270] output = self.model_runner.execute_model(scheduler_output)
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py", line 116, in decorate_context
ERROR 12-19 09:04:11 core.py:270] return func(*args, **kwargs)
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/vllm/v1/worker/gpu_model_runner.py", line 509, in execute_model
ERROR 12-19 09:04:11 core.py:270] hidden_states = self.model(
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
ERROR 12-19 09:04:11 core.py:270] return self._call_impl(*args, **kwargs)
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1747, in _call_impl
ERROR 12-19 09:04:11 core.py:270] return forward_call(*args, **kwargs)
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/models/llama.py", line 568, in forward
ERROR 12-19 09:04:11 core.py:270] model_output = self.model(input_ids, positions, kv_caches,
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/vllm/compilation/decorators.py", line 205, in __call__
ERROR 12-19 09:04:11 core.py:270] model_output = self.forward(*args, **kwargs)
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/models/llama.py", line 338, in forward
ERROR 12-19 09:04:11 core.py:270] def forward(
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
ERROR 12-19 09:04:11 core.py:270] return self._call_impl(*args, **kwargs)
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1747, in _call_impl
ERROR 12-19 09:04:11 core.py:270] return forward_call(*args, **kwargs)
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 632, in _fn
ERROR 12-19 09:04:11 core.py:270] return fn(*args, **kwargs)
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 784, in call_wrapped
ERROR 12-19 09:04:11 core.py:270] return self._wrapped_call(self, *args, **kwargs)
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 361, in __call__
ERROR 12-19 09:04:11 core.py:270] raise e
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 348, in __call__
ERROR 12-19 09:04:11 core.py:270] return super(self.cls, obj).__call__(*args, **kwargs) # type: ignore[misc]
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
ERROR 12-19 09:04:11 core.py:270] return self._call_impl(*args, **kwargs)
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1747, in _call_impl
ERROR 12-19 09:04:11 core.py:270] return forward_call(*args, **kwargs)
ERROR 12-19 09:04:11 core.py:270] File "<eval_with_key>.66", line 240, in forward
ERROR 12-19 09:04:11 core.py:270] submod_1 = self.submod_1(getitem, s0, getitem_1, getitem_2, getitem_3, l_kv_caches_0_); getitem = getitem_1 = getitem_2 = l_kv_caches_0_ = submod_1 = None
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 784, in call_wrapped
ERROR 12-19 09:04:11 core.py:270] return self._wrapped_call(self, *args, **kwargs)
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 361, in __call__
ERROR 12-19 09:04:11 core.py:270] raise e
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 348, in __call__
ERROR 12-19 09:04:11 core.py:270] return super(self.cls, obj).__call__(*args, **kwargs) # type: ignore[misc]
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
ERROR 12-19 09:04:11 core.py:270] return self._call_impl(*args, **kwargs)
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1747, in _call_impl
ERROR 12-19 09:04:11 core.py:270] return forward_call(*args, **kwargs)
ERROR 12-19 09:04:11 core.py:270] File "<eval_with_key>.2", line 5, in forward
ERROR 12-19 09:04:11 core.py:270] unified_attention_with_output = torch.ops.vllm.unified_attention_with_output(query_2, key_2, value, output_1, l_kv_caches_0_, 'decoder', 'model.layers.0.self_attn.attn'); query_2 = key_2 = value = output_1 = l_kv_caches_0_ = unified_attention_with_output = None
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/torch/_ops.py", line 1116, in __call__
ERROR 12-19 09:04:11 core.py:270] return self._op(*args, **(kwargs or {}))
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/vllm/attention/layer.py", line 287, in unified_attention_with_output
ERROR 12-19 09:04:11 core.py:270] self.impl.forward(query,
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/vllm/v1/attention/backends/flash_attn.py", line 172, in forward
ERROR 12-19 09:04:11 core.py:270] flash_attn_varlen_func(
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/vllm/vllm_flash_attn/flash_attn_interface.py", line 270, in flash_attn_varlen_func
ERROR 12-19 09:04:11 core.py:270] out, softmax_lse = _flash_attn_varlen_forward(
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/vllm/vllm_flash_attn/flash_attn_interface.py", line 91, in _flash_attn_varlen_forward
ERROR 12-19 09:04:11 core.py:270] out, softmax_lse = torch.ops.vllm_flash_attn_c.varlen_fwd(
ERROR 12-19 09:04:11 core.py:270] File "/usr/local/lib/python3.10/dist-packages/torch/_ops.py", line 1116, in __call__
ERROR 12-19 09:04:11 core.py:270] return self._op(*args, **(kwargs or {}))
ERROR 12-19 09:04:11 core.py:270] RuntimeError: query and key must have the same dtype
Process ForkProcess-1:
Traceback (most recent call last):
File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/usr/local/lib/python3.10/dist-packages/vllm/v1/engine/core.py", line 271, in run_engine_core
raise e
File "/usr/local/lib/python3.10/dist-packages/vllm/v1/engine/core.py", line 264, in run_engine_core
engine_core.run_busy_loop()
File "/usr/local/lib/python3.10/dist-packages/vllm/v1/engine/core.py", line 302, in run_busy_loop
outputs = self.step()
File "/usr/local/lib/python3.10/dist-packages/vllm/v1/engine/core.py", line 125, in step
output = self.model_executor.execute_model(scheduler_output)
File "/usr/local/lib/python3.10/dist-packages/vllm/v1/executor/uniproc_executor.py", line 72, in execute_model
output = self.worker.execute_model(scheduler_output)
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/vllm/v1/worker/gpu_worker.py", line 203, in execute_model
output = self.model_runner.execute_model(scheduler_output)
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/vllm/v1/worker/gpu_model_runner.py", line 509, in execute_model
hidden_states = self.model(
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/models/llama.py", line 568, in forward
model_output = self.model(input_ids, positions, kv_caches,
File "/usr/local/lib/python3.10/dist-packages/vllm/compilation/decorators.py", line 205, in __call__
model_output = self.forward(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/models/llama.py", line 338, in forward
def forward(
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 632, in _fn
return fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 784, in call_wrapped
return self._wrapped_call(self, *args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 361, in __call__
raise e
File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 348, in __call__
return super(self.cls, obj).__call__(*args, **kwargs) # type: ignore[misc]
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(*args, **kwargs)
File "<eval_with_key>.66", line 240, in forward
submod_1 = self.submod_1(getitem, s0, getitem_1, getitem_2, getitem_3, l_kv_caches_0_); getitem = getitem_1 = getitem_2 = l_kv_caches_0_ = submod_1 = None
File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 784, in call_wrapped
return self._wrapped_call(self, *args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 361, in __call__
raise e
File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 348, in __call__
return super(self.cls, obj).__call__(*args, **kwargs) # type: ignore[misc]
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(*args, **kwargs)
File "<eval_with_key>.2", line 5, in forward
unified_attention_with_output = torch.ops.vllm.unified_attention_with_output(query_2, key_2, value, output_1, l_kv_caches_0_, 'decoder', 'model.layers.0.self_attn.attn'); query_2 = key_2 = value = output_1 = l_kv_caches_0_ = unified_attention_with_output = None
File "/usr/local/lib/python3.10/dist-packages/torch/_ops.py", line 1116, in __call__
return self._op(*args, **(kwargs or {}))
File "/usr/local/lib/python3.10/dist-packages/vllm/attention/layer.py", line 287, in unified_attention_with_output
self.impl.forward(query,
File "/usr/local/lib/python3.10/dist-packages/vllm/v1/attention/backends/flash_attn.py", line 172, in forward
flash_attn_varlen_func(
File "/usr/local/lib/python3.10/dist-packages/vllm/vllm_flash_attn/flash_attn_interface.py", line 270, in flash_attn_varlen_func
out, softmax_lse = _flash_attn_varlen_forward(
File "/usr/local/lib/python3.10/dist-packages/vllm/vllm_flash_attn/flash_attn_interface.py", line 91, in _flash_attn_varlen_forward
out, softmax_lse = torch.ops.vllm_flash_attn_c.varlen_fwd(
File "/usr/local/lib/python3.10/dist-packages/torch/_ops.py", line 1116, in __call__
return self._op(*args, **(kwargs or {}))
RuntimeError: query and key must have the same dtype
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working