-
-
Notifications
You must be signed in to change notification settings - Fork 9.8k
Closed as not planned
Closed as not planned
Copy link
Labels
bugSomething isn't workingSomething isn't workingstaleOver 90 days of inactivityOver 90 days of inactivity
Description
Your current environment
The output of `python collect_env.py`
```text
ollecting environment information...
PyTorch version: 2.3.1+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Debian GNU/Linux 11 (bullseye) (x86_64)
GCC version: (Debian 10.2.1-6) 10.2.1 20210110
Clang version: Could not collect
CMake version: version 3.30.2
Libc version: glibc-2.31
Python version: 3.9.2 (default, Feb 28 2021, 17:03:44) [GCC 10.2.1 20210110] (64-bit runtime)
Python platform: Linux-5.4.143.bsk.8-amd64-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 12.1.105
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA L40
GPU 1: NVIDIA L40
GPU 2: NVIDIA L40
GPU 3: NVIDIA L40
GPU 4: NVIDIA L40
GPU 5: NVIDIA L40
GPU 6: NVIDIA L40
GPU 7: NVIDIA L40
Nvidia driver version: Could not collect
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 52 bits physical, 57 bits virtual
CPU(s): 180
On-line CPU(s) list: 0-179
Thread(s) per core: 2
Core(s) per socket: 45
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 143
Model name: Intel(R) Xeon(R) Platinum 8457C
Stepping: 8
CPU MHz: 2599.044
BogoMIPS: 5198.08
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 4.2 MiB
L1i cache: 2.8 MiB
L2 cache: 180 MiB
L3 cache: 195 MiB
NUMA node0 CPU(s): 0-89
NUMA node1 CPU(s): 90-179
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Mitigation; TSX disabled
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx512_bf16 wbnoinvd arat avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid cldemote movdiri movdir64b md_clear arch_capabilities
Versions of relevant libraries:
[pip3] byted-torch==2.1.0.post2
[pip3] flashinfer==0.0.8+cu121torch2.3
[pip3] numpy==1.26.2
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] pyzmq==26.1.0
[pip3] torch==2.3.1
[pip3] torchaudio==2.1.0+cu121
[pip3] torchvision==0.18.1
[pip3] transformers==4.44.0
[pip3] triton==2.3.1
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.3.post1@38c4b7e863570a045308af814c72f4504297222e
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NODE NODE NODE SYS SYS SYS SYS SYS 2-89 0 N/A
GPU1 NODE X NODE NODE SYS SYS SYS SYS SYS 2-89 0 N/A
GPU2 NODE NODE X NODE SYS SYS SYS SYS SYS 2-89 0 N/A
GPU3 NODE NODE NODE X SYS SYS SYS SYS SYS 2-89 0 N/A
GPU4 SYS SYS SYS SYS X NODE NODE NODE SYS 92-177 1 N/A
GPU5 SYS SYS SYS SYS NODE X NODE NODE SYS 92-177 1 N/A
GPU6 SYS SYS SYS SYS NODE NODE X NODE SYS 92-177 1 N/A
GPU7 SYS SYS SYS SYS NODE NODE NODE X SYS 92-177 1 N/A
NIC0 SYS SYS SYS SYS SYS SYS SYS SYS X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
</details>
### 🐛 Describe the bug
Using the ds-coder-v2-awq [,](https://huggingface.co/casperhansen/deepseek-coder-v2-instruct-awq) the following error is reported.
Traceback (most recent call last):
[rank0]: File "/opt/tiger/deepseek_http/vllm_server.py", line 134, in <module>
[rank0]: engine = AsyncLLMEngine.from_engine_args(engine_args)
[rank0]: File "/usr/local/lib/python3.9/dist-packages/vllm/engine/async_llm_engine.py", line 466, in from_engine_args
[rank0]: engine = cls(
[rank0]: File "/usr/local/lib/python3.9/dist-packages/vllm/engine/async_llm_engine.py", line 380, in __init__
[rank0]: self.engine = self._init_engine(*args, **kwargs)
[rank0]: File "/usr/local/lib/python3.9/dist-packages/vllm/engine/async_llm_engine.py", line 547, in _init_engine
[rank0]: return engine_class(*args, **kwargs)
[rank0]: File "/usr/local/lib/python3.9/dist-packages/vllm/engine/llm_engine.py", line 251, in __init__
[rank0]: self.model_executor = executor_class(
[rank0]: File "/usr/local/lib/python3.9/dist-packages/vllm/executor/multiproc_gpu_executor.py", line 201, in __init__
[rank0]: super().__init__(*args, **kwargs)
[rank0]: File "/usr/local/lib/python3.9/dist-packages/vllm/executor/distributed_gpu_executor.py", line 25, in __init__
[rank0]: super().__init__(*args, **kwargs)
[rank0]: File "/usr/local/lib/python3.9/dist-packages/vllm/executor/executor_base.py", line 47, in __init__
[rank0]: self._init_executor()
[rank0]: File "/usr/local/lib/python3.9/dist-packages/vllm/executor/multiproc_gpu_executor.py", line 124, in _init_executor
[rank0]: self._run_workers("load_model",
[rank0]: File "/usr/local/lib/python3.9/dist-packages/vllm/executor/multiproc_gpu_executor.py", line 178, in _run_workers
[rank0]: driver_worker_output = driver_worker_method(*args, **kwargs)
[rank0]: File "/usr/local/lib/python3.9/dist-packages/vllm/worker/worker.py", line 139, in load_model
[rank0]: self.model_runner.load_model()
[rank0]: File "/usr/local/lib/python3.9/dist-packages/vllm/worker/model_runner.py", line 682, in load_model
[rank0]: self.model = get_model(model_config=self.model_config,
[rank0]: File "/usr/local/lib/python3.9/dist-packages/vllm/model_executor/model_loader/__init__.py", line 21, in get_model
[rank0]: return loader.load_model(model_config=model_config,
[rank0]: File "/usr/local/lib/python3.9/dist-packages/vllm/model_executor/model_loader/loader.py", line 280, in load_model
[rank0]: model = _initialize_model(model_config, self.load_config,
[rank0]: File "/usr/local/lib/python3.9/dist-packages/vllm/model_executor/model_loader/loader.py", line 111, in _initialize_model
[rank0]: return model_class(config=model_config.hf_config,
[rank0]: File "/usr/local/lib/python3.9/dist-packages/vllm/model_executor/models/deepseek_v2.py", line 439, in __init__
[rank0]: self.model = DeepseekV2Model(config, cache_config, quant_config)
[rank0]: File "/usr/local/lib/python3.9/dist-packages/vllm/model_executor/models/deepseek_v2.py", line 401, in __init__
[rank0]: self.layers = nn.ModuleList([
[rank0]: File "/usr/local/lib/python3.9/dist-packages/vllm/model_executor/models/deepseek_v2.py", line 402, in <listcomp>
[rank0]: DeepseekV2DecoderLayer(config,
[rank0]: File "/usr/local/lib/python3.9/dist-packages/vllm/model_executor/models/deepseek_v2.py", line 341, in __init__
[rank0]: self.mlp = DeepseekV2MoE(config=config, quant_config=quant_config)
[rank0]: File "/usr/local/lib/python3.9/dist-packages/vllm/model_executor/models/deepseek_v2.py", line 106, in __init__
[rank0]: self.experts = FusedMoE(num_experts=config.n_routed_experts,
[rank0]: File "/usr/local/lib/python3.9/dist-packages/vllm/model_executor/layers/fused_moe/layer.py", line 186, in __init__
[rank0]: assert self.quant_method is not None
[rank0]: AssertionError
kir-gadjello
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't workingstaleOver 90 days of inactivityOver 90 days of inactivity