Homomorphic Evaluation of LWR-based PRFs and Application to Transciphering

Amit Deo Marc Joye Benoît Libert Benjamin R. Curtis Mayeul de Bellabre FHE.org 2025 • Sofia, March 25, 2025

Main Ideas

- **Fast homomorphic** evaluation of Learning with Rounding PRF
- Methods utilize native TFHE operations; e.g., blind rotation
- Optimization 1: Securely tweak PRF definition for negacyclicity
- Optimization 2: Tweak parameters to save ~ 40% of PBS time
- Applications: Transciphering and blockchain games

Application: Transciphering

A client can send large amounts of data to the cloud using **transciphering**. The message *M* is encrypted and stored on the cloud **compactly** as

$$(x, M \oplus PRF_{k}(x))$$

with a secret key k. The cloud uses a homomorphically encrypted k to recover an FHE encryption of M, which reduces transmission costs

Technical Details

$$\mathbf{A} = H(x) \in \mathbb{Z}_q^{m \times n}$$

$$\mathbf{k} \leftarrow \{0, 1\}^n$$

Original PRF	Tweaked PRF		
$PRF_{\boldsymbol{k}}(x) = \left\lfloor \frac{p}{q} \mathbf{A} \cdot \boldsymbol{k} \right\rfloor mod p$	$PRF'_{k}(x) = (-1)^{msb} \cdot PRF_{k}(x)$		
Security directly from standard LWR with binary secret	Security via reduction from original PRF		
"non-negacyclic"	"negacyclic"		
Negacyclic functions requires a single PBS			

Original PRF requires two sequential PBSes and tweaked PRF requires one PBS (i.e., has PBS depth 1)

We consider two parameter sets presented in the below table for our implementation

	n	n_{LWR}	Ν	q
MESSAGE_1_CARRY_1	702	409	512	2 ⁶⁴
MESSAGE_2_CARRY_2	742	445	2048	2 ⁶⁴

Single-threaded results: On hpc7a.96xlarge, the depth-1 construction with 1_1 parameters yields ~ 1070 encrypted PRF bits/s. The second result on an Apple MacBook yields ~ 808 PRF bits/s

Parameter set	MESSAGE_1_CARRY_	1 MESSAGE 2 CARRY 2
Plaintext bits	3	4
Latency (ms)	2.803 / 3.714	6.033 / 8.187
Throughput (bits/	s) 1070 / 808	829 / 611
Bootstrap Key	11.0 MB	23.9 MB
PRF Eval Key	6.4 MB	13.9 MB

Optimization improves the 2_2 parameter throughput to **961/981 bits/s** with PRF Eval key size 9 MB

Resources
zama.ai/blog
github.com/zama-ai

Full paper: ePrint 2024/665