-
Notifications
You must be signed in to change notification settings - Fork 1.6k
Closed
Labels
Description
Thanks for your debug, but...
-
"max_length = tf.shape(self.outputs)[1]
self.outputs = tf.reshape(tf.concat(1, outputs), [-1, max_length, n_hidden])", this is your new code
but also wrong, "max_length = tf.shape(self.outputs)[1]" no self.outputs, maybe like this
"max_length = tf.shape(outputs)[1]" -
i can not find some DynamicRNNLayer example, the examples:
input_seqs = tf.placeholder(dtype=tf.int64, shape=[batch_size, None], name="input_seqs") network = tl.layers.EmbeddingInputlayer( inputs = input_seqs, vocabulary_size = vocab_size, embedding_size = embedding_size, name = 'seq_embedding') network = tl.layers.DynamicRNNLayer(network, cell_fn = tf.nn.rnn_cell.BasicLSTMCell, n_hidden = embedding_size, dropout = 0.7, sequence_length = tl.layers.retrieve_seq_length_op2(input_seqs), return_seq_2d = True, # stack denselayer or compute cost after it name = 'dynamic_rnn',) network = tl.layers.DenseLayer(network, n_units=vocab_size, act=tf.identity, name="output")
i can not understand "shape=[batch_size, None]" i just write None? or n_step(max)
if my data like this: (Sentiment Analysis)x = [[2, 1, 8, 9, 2] [2, 4] [1, 1, 3, 5] [6, 3, 2]] y = [1, 0, 1, 1]
i padding with zero
x = [[2, 1, 8, 9, 2] [2, 4, 0, 0, 0] [1, 1, 3, 5, 0] [6, 3, 2, 0, 0]]
how to use DynamicRNNLayer?