-
Notifications
You must be signed in to change notification settings - Fork 2.8k
Description
Checklist
- 1. I have searched related issues but cannot get the expected help.
- 2. The bug has not been fixed in the latest version.
- 3. Please note that if the bug-related issue you submitted lacks corresponding environment info and a minimal reproducible demo, it will be challenging for us to reproduce and resolve the issue, reducing the likelihood of receiving feedback.
- 4. If the issue you raised is not a bug but a question, please raise a discussion at https://github.com/sgl-project/sglang/discussions/new/choose Otherwise, it will be closed.
- 5. Please use English, otherwise it will be closed.
Describe the bug
The SGLang server crashes with the error "Decode out of memory" when the --page-size
parameter is not set to 1. As shown in the log below, there is sufficient space (2048 tokens) available for new tokens. However, an allocation attempt for 148 tokens fail
RuntimeError: Decode out of memory. Try to lower your batch size. Try to allocate 148 tokens. Avaliable tokens: 2048 self.token_to_kv_pool_allocator.available_size()=2048 self.tree_cache.evictable_size()=0
Reproduction
server command:
python -m sglang.launch_server --mem-fraction-static 0.90 --model-path <deepseek-v3/deeseek-r1> --trust-remote-code --tp-size 8 --disable-cuda-graph --page-size 64
client command:
python -m sglang.bench_serving --dataset-name random --dataset-path <path-to-sharegpt> --random-range-ratio 1 --random-input-len 200 --random-output-len 200 --num-prompts 256
Environment
INFO 03-20 02:45:53 init.py:194] No platform detected, vLLM is running on UnspecifiedPlatform
Python: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0]
CUDA available: True
GPU 0,1,2,3,4,5,6,7: NVIDIA H20
GPU 0,1,2,3,4,5,6,7 Compute Capability: 9.0
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 12.6, V12.6.77
CUDA Driver Version: 535.183.06
PyTorch: 2.5.1+cu124
sgl_kernel: 0.0.5
flashinfer: 0.2.3+cu124torch2.5
triton: 3.1.0
transformers: 4.48.3
torchao: 0.9.0
numpy: 1.26.4
aiohttp: 3.10.5
fastapi: 0.115.11
hf_transfer: 0.1.9
huggingface_hub: 0.29.3
interegular: 0.3.3
modelscope: 1.24.0
orjson: 3.10.15
packaging: 23.2
psutil: 6.0.0
pydantic: 2.9.2
multipart: 0.0.20
zmq: 26.2.0
uvicorn: 0.34.0
uvloop: 0.21.0
vllm: 0.7.2
openai: 1.66.5
tiktoken: 0.9.0
anthropic: 0.49.0
decord: 0.6.0