Skip to content

[Feature]: Benchmarking H200 #2450

@antferdom

Description

@antferdom

Checklist

Motivation

Research Questions

  • Explore the tradeoffs of increasing the number of chips with more memory, H200, versus increasing the parallel inference world size when using less HBM GPUs, H100 (see [Efficiently Scaling Transformer Inference](https://arxiv.org/abs/2211.05102)). Reduce as much as possible price/generation at scale.
  • How can we leverage H200 extra HBM for efficient KV cache management? Test long context window.
  • Measure the implications of faster GPU memory bandwidth while executing parallel inference.

Models of Interest

Preliminar Results

Following the benchmarks from sglang benchmarks

Environment Configuration

Using the latest Docker image lmsysorg/sglang:latest with SGLang v0.4

Collecting environment information...
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.31

Python version: 3.10.16 (main, Dec  4 2024, 08:53:37) [GCC 9.4.0] (64-bit runtime)
Python platform: Linux-5.15.0-124-generic-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 12.1.105
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA H200
GPU 1: NVIDIA H200
GPU 2: NVIDIA H200
GPU 3: NVIDIA H200
GPU 4: NVIDIA H200
GPU 5: NVIDIA H200
GPU 6: NVIDIA H200
GPU 7: NVIDIA H200

Nvidia driver version: 550.127.05
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Byte Order:                           Little Endian
Address sizes:                        52 bits physical, 57 bits virtual
CPU(s):                               192
On-line CPU(s) list:                  0-191
Thread(s) per core:                   1
Core(s) per socket:                   96
Socket(s):                            2
NUMA node(s):                         2
Vendor ID:                            AuthenticAMD
CPU family:                           25
Model:                                17
Model name:                           AMD EPYC 9654 96-Core Processor
Stepping:                             1
Frequency boost:                      enabled
CPU MHz:                              1479.783
CPU max MHz:                          3707.8120
CPU min MHz:                          1500.0000
BogoMIPS:                             4799.99
Virtualization:                       AMD-V
L1d cache:                            6 MiB
L1i cache:                            6 MiB
L2 cache:                             192 MiB
L3 cache:                             768 MiB
NUMA node0 CPU(s):                    0-95
NUMA node1 CPU(s):                    96-191
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Mitigation; safe RET
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Enhanced / Automatic IBRS; IBPB conditional; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

Online benchmark results

Llama 3.1 70B Instruct 4 x H200 141GB

RPS Num Prompts Engine Median E2E Latency Median TTFT Median TPOT Median ITL
4 1200 SGLang 3005.24 65.72 18.47 15.94
8 2400 SGLang 4064.98 73.70 24.02 17.75

Offline benchmark results

Llama 3.1 70B Instruct 4 x H200 141GB

RPS Num Prompts Engine Request throughput Output token throughput Tensor Parallel
inf 5000 SGLang 25.14 4885.17 4

Llama 3.1 70B Instruct 8 x H200 141GB

RPS Num Prompts Engine Request throughput Output token throughput Tensor Parallel
inf 5000 SGLang 37.96 7376.03 8

Llama 3.1 405B Instruct 8 x H200 141GB

RPS Num Prompts Engine Request throughput Output token throughput Tensor Parallel
inf 5000 SGLang 9.16 1779.16 8

Q: Where should we place this benchmarking information, in existing docs or create a new one? @merrymercy @zhyncs

Related resources

Hopper GPU HW specs comparison: H100 & H200

Technical Specifications
H100 SXM H200 SXM
BFLOAT16 989.5 TFLOPS 989.5 TFLOPS
FP16 989.5 TFLOPS 989.5 TFLOPS
FP8 1979 TFLOPS 1979 TFLOPS
INT8 1979 TFLOPS 1979 TFLOPS
GPU Memory 80 GB 144 GB
GPU Memory Bandwidth 3.35 TB/s 4.8 TB/s

Metadata

Metadata

Assignees

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions