-
-
Notifications
You must be signed in to change notification settings - Fork 654
matrix
, Graph.incidence_matrix
, LinearMatroid.representation
: Support constructing Hom(CombinatorialFreeModule)
elements
#37692
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
…ys, check consistency
…hods _repr_matrix, _ascii_art_matrix, _unicode_art_matrix
It looks ok. I am thinking however that it may complicate the code. E.g., in Another small comment: in |
Thanks; these formatting changes are coming from the dependency #37607. I agree that some further improvements are possible to make the formatting more consistent, but I don't want to do it on this PR. |
I don't think the code got more complicated. (The description of the options did get more complicated.) What is gained is the improved connection to the central structure using which algebraic combinatorics is expressed in Sage, the |
@gmou3 By the way, what's still missing is the implementation of the roundtrip:
|
Ok. This is the more general comment I would raise, that things appear to be getting a bit baroque. Also in
I could fix that. Similarly, with |
Lint and Build&Test failures are unrelated. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Fine by me. I'll play around with adding the matroid morphism input after this is merged.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
As per the Developer Guide.
Co-authored-by: gmou3 <32706872+gmou3@users.noreply.github.com>
Documentation preview for this PR (built with commit 3e71e20; changes) is ready! 🎉 |
Merged the latest version of the dependency #37514. Any remaining concerns, or may I set to "positive review"? |
None from me. |
Thanks! |
doesn't work, ci fails |
All tests pass. Failure of "test modularized distributions" is unrelated. |
sagemathgh-37692: `matrix`, `Graph.incidence_matrix`, `LinearMatroid.representation`: Support constructing `Hom(CombinatorialFreeModule)` elements <!-- ^ Please provide a concise and informative title. --> <!-- ^ Don't put issue numbers in the title, do this in the PR description below. --> <!-- ^ For example, instead of "Fixes sagemath#12345" use "Introduce new method to calculate 1 + 2". --> <!-- v Describe your changes below in detail. --> <!-- v Why is this change required? What problem does it solve? --> <!-- v If this PR resolves an open issue, please link to it here. For example, "Fixes sagemath#12345". --> We use morphisms of `CombinatorialFreeModule`s (each of which has a distinguished finite or enumerated basis indexed by arbitrary objects) as matrices whose rows and columns are indexed by arbitrary objects (`row_keys`, `column_keys`). Example: ``` sage: M = matrix([[1,2,3], [4,5,6]], ....: column_keys=['a','b','c'], row_keys=['u','v']); M Generic morphism: From: Free module generated by {'a', 'b', 'c'} over Integer Ring To: Free module generated by {'u', 'v'} over Integer Ring ``` Example application done here on the PR: The incidence matrix of a graph or digraph. Returning it as a morphism instead of a matrix has the benefit of keeping the vertices and edges with the result. This new behavior is activated by special values for the existing parameters `vertices` and `edges`. ``` sage: D12 = posets.DivisorLattice(12).hasse_diagram() sage: phi_VE = D12.incidence_matrix(vertices=True, edges=True); phi_VE Generic morphism: From: Free module generated by {(1, 2), (1, 3), (2, 4), (2, 6), (3, 6), (4, 12), (6, 12)} over Integer Ring To: Free module generated by {1, 2, 3, 4, 6, 12} over Integer Ring sage: print(phi_VE._unicode_art_matrix()) (1, 2) (1, 3) (2, 4) (2, 6) (3, 6) (4, 12) (6, 12) 1⎛ -1 -1 0 0 0 0 0⎞ 2⎜ 1 0 -1 -1 0 0 0⎟ 3⎜ 0 1 0 0 -1 0 0⎟ 4⎜ 0 0 1 0 0 -1 0⎟ 6⎜ 0 0 0 1 1 0 -1⎟ 12⎝ 0 0 0 0 0 1 1⎠ ``` ### 📝 Checklist <!-- Put an `x` in all the boxes that apply. --> - [x] The title is concise and informative. - [x] The description explains in detail what this PR is about. - [ ] I have linked a relevant issue or discussion. - [ ] I have created tests covering the changes. - [ ] I have updated the documentation accordingly. ### ⌛ Dependencies <!-- List all open PRs that this PR logically depends on. For example, --> <!-- - sagemath#12345: short description why this is a dependency --> <!-- - sagemath#34567: ... --> - Depends on sagemath#37607 - Depends on sagemath#37514 - Depends on sagemath#37606 - Depends on sagemath#37646 URL: sagemath#37692 Reported by: Matthias Köppe Reviewer(s): gmou3
sagemathgh-37940: Support morphisms in `Matroid` constructor This follows the merging of sagemath#37692 and it enables the (re-)feeding of a linear matroid's morphism representation into the `Matroid` constructor. Example: ``` sage: M = matroids.catalog.Fano() sage: A = M.representation(order=True); A Generic morphism: From: Free module generated by {'a', 'b', 'c', 'd', 'e', 'f', 'g'} over Finite Field of size 2 To: Free module generated by {0, 1, 2} over Finite Field of size 2 sage: Matroid(A) Binary matroid of rank 3 on 7 elements, type (3, 0) ``` URL: sagemath#37940 Reported by: gmou3 Reviewer(s): gmou3, Matthias Köppe, Travis Scrimshaw
sagemathgh-37940: Support morphisms in `Matroid` constructor This follows the merging of sagemath#37692 and it enables the (re-)feeding of a linear matroid's morphism representation into the `Matroid` constructor. Example: ``` sage: M = matroids.catalog.Fano() sage: A = M.representation(order=True); A Generic morphism: From: Free module generated by {'a', 'b', 'c', 'd', 'e', 'f', 'g'} over Finite Field of size 2 To: Free module generated by {0, 1, 2} over Finite Field of size 2 sage: Matroid(A) Binary matroid of rank 3 on 7 elements, type (3, 0) ``` URL: sagemath#37940 Reported by: gmou3 Reviewer(s): gmou3, Matthias Köppe, Travis Scrimshaw
sagemathgh-37955: `Graph.{[weighted_]adjacency_matrix,kirchhoff_matrix}`: Support constructing `End(CombinatorialFreeModule)` elements <!-- ^ Please provide a concise and informative title. --> <!-- ^ Don't put issue numbers in the title, do this in the PR description below. --> <!-- ^ For example, instead of "Fixes sagemath#12345" use "Introduce new method to calculate 1 + 2". --> <!-- v Describe your changes below in detail. --> <!-- v Why is this change required? What problem does it solve? --> <!-- v If this PR resolves an open issue, please link to it here. For example, "Fixes sagemath#12345". --> This is a follow-up after - sagemath#37692 ... to cover a few more methods. The methods can now create endomorphisms of free modules whose bases are indexed by the vertices. To help with this, we make the `matrix` constructor a bit more flexible. This is also preparation for making the spectral graph theory methods ready for `CombinatorialFreeModule`: - sagemath#37943 ### 📝 Checklist <!-- Put an `x` in all the boxes that apply. --> - [x] The title is concise and informative. - [x] The description explains in detail what this PR is about. - [x] I have linked a relevant issue or discussion. - [ ] I have created tests covering the changes. - [ ] I have updated the documentation and checked the documentation preview. ### ⌛ Dependencies <!-- List all open PRs that this PR logically depends on. For example, --> <!-- - sagemath#12345: short description why this is a dependency --> <!-- - sagemath#34567: ... --> URL: sagemath#37955 Reported by: Matthias Köppe Reviewer(s): David Coudert, Matthias Köppe
sagemathgh-37940: Support morphisms in `Matroid` constructor This follows the merging of sagemath#37692 and it enables the (re-)feeding of a linear matroid's morphism representation into the `Matroid` constructor. Example: ``` sage: M = matroids.catalog.Fano() sage: A = M.representation(order=True); A Generic morphism: From: Free module generated by {'a', 'b', 'c', 'd', 'e', 'f', 'g'} over Finite Field of size 2 To: Free module generated by {0, 1, 2} over Finite Field of size 2 sage: Matroid(A) Binary matroid of rank 3 on 7 elements, type (3, 0) ``` URL: sagemath#37940 Reported by: gmou3 Reviewer(s): gmou3, Matthias Köppe, Travis Scrimshaw
sagemathgh-37955: `Graph.{[weighted_]adjacency_matrix,kirchhoff_matrix}`: Support constructing `End(CombinatorialFreeModule)` elements <!-- ^ Please provide a concise and informative title. --> <!-- ^ Don't put issue numbers in the title, do this in the PR description below. --> <!-- ^ For example, instead of "Fixes sagemath#12345" use "Introduce new method to calculate 1 + 2". --> <!-- v Describe your changes below in detail. --> <!-- v Why is this change required? What problem does it solve? --> <!-- v If this PR resolves an open issue, please link to it here. For example, "Fixes sagemath#12345". --> This is a follow-up after - sagemath#37692 ... to cover a few more methods. The methods can now create endomorphisms of free modules whose bases are indexed by the vertices. To help with this, we make the `matrix` constructor a bit more flexible. This is also preparation for making the spectral graph theory methods ready for `CombinatorialFreeModule`: - sagemath#37943 ### 📝 Checklist <!-- Put an `x` in all the boxes that apply. --> - [x] The title is concise and informative. - [x] The description explains in detail what this PR is about. - [x] I have linked a relevant issue or discussion. - [ ] I have created tests covering the changes. - [ ] I have updated the documentation and checked the documentation preview. ### ⌛ Dependencies <!-- List all open PRs that this PR logically depends on. For example, --> <!-- - sagemath#12345: short description why this is a dependency --> <!-- - sagemath#34567: ... --> URL: sagemath#37955 Reported by: Matthias Köppe Reviewer(s): David Coudert, Matthias Köppe
sagemathgh-37940: Support morphisms in `Matroid` constructor This follows the merging of sagemath#37692 and it enables the (re-)feeding of a linear matroid's morphism representation into the `Matroid` constructor. Example: ``` sage: M = matroids.catalog.Fano() sage: A = M.representation(order=True); A Generic morphism: From: Free module generated by {'a', 'b', 'c', 'd', 'e', 'f', 'g'} over Finite Field of size 2 To: Free module generated by {0, 1, 2} over Finite Field of size 2 sage: Matroid(A) Binary matroid of rank 3 on 7 elements, type (3, 0) ``` URL: sagemath#37940 Reported by: gmou3 Reviewer(s): gmou3, Matthias Köppe, Travis Scrimshaw
sagemathgh-37955: `Graph.{[weighted_]adjacency_matrix,kirchhoff_matrix}`: Support constructing `End(CombinatorialFreeModule)` elements <!-- ^ Please provide a concise and informative title. --> <!-- ^ Don't put issue numbers in the title, do this in the PR description below. --> <!-- ^ For example, instead of "Fixes sagemath#12345" use "Introduce new method to calculate 1 + 2". --> <!-- v Describe your changes below in detail. --> <!-- v Why is this change required? What problem does it solve? --> <!-- v If this PR resolves an open issue, please link to it here. For example, "Fixes sagemath#12345". --> This is a follow-up after - sagemath#37692 ... to cover a few more methods. The methods can now create endomorphisms of free modules whose bases are indexed by the vertices. To help with this, we make the `matrix` constructor a bit more flexible. This is also preparation for making the spectral graph theory methods ready for `CombinatorialFreeModule`: - sagemath#37943 ### 📝 Checklist <!-- Put an `x` in all the boxes that apply. --> - [x] The title is concise and informative. - [x] The description explains in detail what this PR is about. - [x] I have linked a relevant issue or discussion. - [ ] I have created tests covering the changes. - [ ] I have updated the documentation and checked the documentation preview. ### ⌛ Dependencies <!-- List all open PRs that this PR logically depends on. For example, --> <!-- - sagemath#12345: short description why this is a dependency --> <!-- - sagemath#34567: ... --> URL: sagemath#37955 Reported by: Matthias Köppe Reviewer(s): David Coudert, Matthias Köppe
We use morphisms of
CombinatorialFreeModule
s (each of which has a distinguished finite or enumerated basis indexed by arbitrary objects) as matrices whose rows and columns are indexed by arbitrary objects (row_keys
,column_keys
).Example:
Example application done here on the PR: The incidence matrix of a graph or digraph. Returning it as a morphism instead of a matrix has the benefit of keeping the vertices and edges with the result. This new behavior is activated by special values for the existing parameters
vertices
andedges
.📝 Checklist
⌛ Dependencies
MatrixSpace
: Support constructingHom(CombinatorialFreeModule)
#37514