-
-
Notifications
You must be signed in to change notification settings - Fork 654
Closed
Description
The lines
K.<s> = NumberField(x^2+23)
OK = K.ring_of_integers()
E = EllipticCurve([0,0,0,K(1),K(5)])
pp = K.factor_integer(13)[0][0]
Fpp = OK.residue_field(pp)
E.base_extend(Fpp)
produce the error
---------------------------------------------------------------------------
<type 'exceptions.RuntimeError'> Traceback (most recent call last)
/local/pmzcw/prog/sage-2.8.5.1/devel/sage-mine/sage/schemes/elliptic_curves/<ipython console> in <module>()
/local/pmzcw/prog/sage/local/lib/python2.5/site-packages/sage/schemes/elliptic_curves/ell_generic.py in base_extend(self, R)
692
693 def base_extend(self, R):
--> 694 return constructor.EllipticCurve(R, [R(a) for a in self.a_invariants()])
695
696 def base_ring(self):
/local/pmzcw/prog/sage/local/lib/python2.5/site-packages/sage/schemes/elliptic_curves/constructor.py in EllipticCurve(x, y)
104 return ell_rational_field.EllipticCurve_rational_field(x, y)
105 elif rings.is_FiniteField(x):
--> 106 return ell_finite_field.EllipticCurve_finite_field(x, y)
107 elif rings.is_pAdicField(x):
108 return ell_padic_field.EllipticCurve_padic_field(x, y)
/local/pmzcw/prog/sage/local/lib/python2.5/site-packages/sage/schemes/elliptic_curves/ell_finite_field.py in __init__(self, x, y)
53
54 EllipticCurve_field.__init__(
---> 55 self, [field(x) for x in ainvs])
56
57 self._point_class = ell_point.EllipticCurvePoint_finite_field
/local/pmzcw/prog/sage/local/lib/python2.5/site-packages/sage/schemes/elliptic_curves/ell_generic.py in __init__(self, ainvs, extra)
100 ainvs = [K(0),K(0),K(0)] + ainvs
101 self.__ainvs = ainvs
--> 102 if self.discriminant() == 0:
103 raise ArithmeticError, \
104 "Invariants %s define a singular curve."%ainvs
/local/pmzcw/prog/sage/local/lib/python2.5/site-packages/sage/schemes/elliptic_curves/ell_generic.py in discriminant(self)
839 except AttributeError:
840 b2, b4, b6, b8 = self.b_invariants()
--> 841 self.__discriminant = -b2**2*b8 - 8*b4**3 - 27*b6**2 + 9*b2*b4*b6
842 return self.__discriminant
843
/local/pmzcw/prog/sage-2.8.5.1/devel/sage-mine/sage/schemes/elliptic_curves/element.pyx in sage.structure.element.RingElement.__mul__()
/local/pmzcw/prog/sage-2.8.5.1/devel/sage-mine/sage/schemes/elliptic_curves/coerce.pyx in sage.structure.coerce.CoercionModel_cache_maps.bin_op_c()
/local/pmzcw/prog/sage-2.8.5.1/devel/sage-mine/sage/schemes/elliptic_curves/coerce.pyx in sage.structure.coerce.CoercionModel_cache_maps.canonical_coercion_c()
/local/pmzcw/prog/sage-2.8.5.1/devel/sage-mine/sage/schemes/elliptic_curves/coerce.pyx in sage.structure.coerce.CoercionModel_cache_maps._coercion_error()
<type 'exceptions.RuntimeError'>: There is a bug in the coercion code in SAGE.
Both x (=0) and y (=12) are supposed to have identical parents but they don't.
In fact, x has parent 'Residue field of Fractional ideal (13, s - 4)'
whereas y has parent 'Ring of integers modulo 13'
Original elements 0 (parent Residue field of Fractional ideal (13, s - 4)) and 12 (parent Ring of integers modulo 13) and morphisms
<type 'NoneType'> None
<type 'sage.rings.integer_mod.IntegerMod_to_IntegerMod'> Natural morphism:
From: Ring of integers modulo 13
To: Residue field of Fractional ideal (13, s - 4)
Component: number theory
Issue created by migration from https://trac.sagemath.org/ticket/1242