-
-
Notifications
You must be signed in to change notification settings - Fork 4.8k
perf(matrices): make values etc faster for sparse matrices (1.13) #26674
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
Co-authored-by: S.Y. Lee <sylee957@gmail.com>
✅ Hi, I am the SymPy bot. I'm here to help you write a release notes entry. Please read the guide on how to write release notes. Your release notes are in good order. Here is what the release notes will look like:
This will be added to https://github.com/sympy/sympy/wiki/Release-Notes-for-1.13. Click here to see the pull request description that was parsed.
Update The release notes on the wiki have been updated. |
Benchmark results from GitHub Actions Lower numbers are good, higher numbers are bad. A ratio less than 1 Significantly changed benchmark results (PR vs master) Significantly changed benchmark results (master vs previous release) | Change | Before [a36a8b23] <sympy-1.12.1^0> | After [7ba1ae46] | Ratio | Benchmark (Parameter) |
|----------|--------------------------------------|---------------------|---------|----------------------------------------------------------------------|
| - | 69.4±0.6ms | 44.5±0.3ms | 0.64 | integrate.TimeIntegrationRisch02.time_doit(10) |
| - | 67.8±1ms | 44.0±0.5ms | 0.65 | integrate.TimeIntegrationRisch02.time_doit_risch(10) |
| + | 19.0±0.1μs | 30.2±0.1μs | 1.59 | integrate.TimeIntegrationRisch03.time_doit(1) |
| - | 73.4±1ms | 29.0±0.4ms | 0.4 | polys.TimeGCD_GaussInt.time_op(1, 'dense') |
| - | 26.0±0.2ms | 17.0±0.06ms | 0.66 | polys.TimeGCD_GaussInt.time_op(1, 'expr') |
| - | 75.0±0.3ms | 29.1±0.2ms | 0.39 | polys.TimeGCD_GaussInt.time_op(1, 'sparse') |
| - | 258±2ms | 128±1ms | 0.5 | polys.TimeGCD_GaussInt.time_op(2, 'dense') |
| - | 258±2ms | 127±2ms | 0.49 | polys.TimeGCD_GaussInt.time_op(2, 'sparse') |
| - | 654±5ms | 377±2ms | 0.58 | polys.TimeGCD_GaussInt.time_op(3, 'dense') |
| - | 663±5ms | 381±3ms | 0.58 | polys.TimeGCD_GaussInt.time_op(3, 'sparse') |
| - | 501±4μs | 291±1μs | 0.58 | polys.TimeGCD_LinearDenseQuadraticGCD.time_op(1, 'dense') |
| - | 1.79±0.01ms | 1.03±0.01ms | 0.57 | polys.TimeGCD_LinearDenseQuadraticGCD.time_op(2, 'dense') |
| - | 5.83±0.07ms | 3.07±0.02ms | 0.53 | polys.TimeGCD_LinearDenseQuadraticGCD.time_op(3, 'dense') |
| - | 446±1μs | 230±1μs | 0.52 | polys.TimeGCD_QuadraticNonMonicGCD.time_op(1, 'dense') |
| - | 1.46±0.01ms | 668±3μs | 0.46 | polys.TimeGCD_QuadraticNonMonicGCD.time_op(2, 'dense') |
| - | 4.93±0.05ms | 1.67±0.01ms | 0.34 | polys.TimeGCD_QuadraticNonMonicGCD.time_op(3, 'dense') |
| - | 378±2μs | 205±0.4μs | 0.54 | polys.TimeGCD_SparseGCDHighDegree.time_op(1, 'dense') |
| - | 2.44±0.01ms | 1.23±0ms | 0.5 | polys.TimeGCD_SparseGCDHighDegree.time_op(3, 'dense') |
| - | 10.1±0.05ms | 4.37±0.03ms | 0.43 | polys.TimeGCD_SparseGCDHighDegree.time_op(5, 'dense') |
| - | 358±1μs | 169±2μs | 0.47 | polys.TimeGCD_SparseNonMonicQuadratic.time_op(1, 'dense') |
| - | 2.49±0.01ms | 899±3μs | 0.36 | polys.TimeGCD_SparseNonMonicQuadratic.time_op(3, 'dense') |
| - | 9.72±0.06ms | 2.71±0.01ms | 0.28 | polys.TimeGCD_SparseNonMonicQuadratic.time_op(5, 'dense') |
| - | 1.04±0.01ms | 428±2μs | 0.41 | polys.TimePREM_LinearDenseQuadraticGCD.time_op(3, 'dense') |
| - | 1.72±0.01ms | 505±2μs | 0.29 | polys.TimePREM_LinearDenseQuadraticGCD.time_op(3, 'sparse') |
| - | 5.98±0.08ms | 1.81±0.02ms | 0.3 | polys.TimePREM_LinearDenseQuadraticGCD.time_op(5, 'dense') |
| - | 8.52±0.03ms | 1.49±0.01ms | 0.18 | polys.TimePREM_LinearDenseQuadraticGCD.time_op(5, 'sparse') |
| - | 284±2μs | 65.4±0.2μs | 0.23 | polys.TimePREM_QuadraticNonMonicGCD.time_op(1, 'sparse') |
| - | 3.47±0.04ms | 390±2μs | 0.11 | polys.TimePREM_QuadraticNonMonicGCD.time_op(3, 'dense') |
| - | 3.99±0.05ms | 281±0.6μs | 0.07 | polys.TimePREM_QuadraticNonMonicGCD.time_op(3, 'sparse') |
| - | 6.98±0.01ms | 1.25±0.01ms | 0.18 | polys.TimePREM_QuadraticNonMonicGCD.time_op(5, 'dense') |
| - | 8.70±0.07ms | 858±8μs | 0.1 | polys.TimePREM_QuadraticNonMonicGCD.time_op(5, 'sparse') |
| - | 4.96±0.01ms | 2.98±0ms | 0.6 | polys.TimeSUBRESULTANTS_LinearDenseQuadraticGCD.time_op(2, 'sparse') |
| - | 12.2±0.1ms | 6.69±0.04ms | 0.55 | polys.TimeSUBRESULTANTS_LinearDenseQuadraticGCD.time_op(3, 'dense') |
| - | 22.3±0.1ms | 9.07±0.02ms | 0.41 | polys.TimeSUBRESULTANTS_LinearDenseQuadraticGCD.time_op(3, 'sparse') |
| - | 5.20±0.01ms | 868±7μs | 0.17 | polys.TimeSUBRESULTANTS_QuadraticNonMonicGCD.time_op(1, 'sparse') |
| - | 12.5±0.05ms | 7.03±0.06ms | 0.56 | polys.TimeSUBRESULTANTS_QuadraticNonMonicGCD.time_op(2, 'sparse') |
| - | 103±1ms | 25.7±0.09ms | 0.25 | polys.TimeSUBRESULTANTS_QuadraticNonMonicGCD.time_op(3, 'dense') |
| - | 166±3ms | 53.9±0.07ms | 0.33 | polys.TimeSUBRESULTANTS_QuadraticNonMonicGCD.time_op(3, 'sparse') |
| - | 174±0.8μs | 112±0.9μs | 0.64 | polys.TimeSUBRESULTANTS_SparseGCDHighDegree.time_op(1, 'dense') |
| - | 361±4μs | 215±1μs | 0.6 | polys.TimeSUBRESULTANTS_SparseGCDHighDegree.time_op(1, 'sparse') |
| - | 4.24±0.03ms | 857±3μs | 0.2 | polys.TimeSUBRESULTANTS_SparseGCDHighDegree.time_op(3, 'dense') |
| - | 5.26±0.05ms | 387±1μs | 0.07 | polys.TimeSUBRESULTANTS_SparseGCDHighDegree.time_op(3, 'sparse') |
| - | 20.8±0.2ms | 2.82±0.01ms | 0.14 | polys.TimeSUBRESULTANTS_SparseGCDHighDegree.time_op(5, 'dense') |
| - | 22.9±0.2ms | 636±5μs | 0.03 | polys.TimeSUBRESULTANTS_SparseGCDHighDegree.time_op(5, 'sparse') |
| - | 482±0.9μs | 134±0.6μs | 0.28 | polys.TimeSUBRESULTANTS_SparseNonMonicQuadratic.time_op(1, 'sparse') |
| - | 4.73±0.08ms | 621±4μs | 0.13 | polys.TimeSUBRESULTANTS_SparseNonMonicQuadratic.time_op(3, 'dense') |
| - | 5.23±0.04ms | 139±2μs | 0.03 | polys.TimeSUBRESULTANTS_SparseNonMonicQuadratic.time_op(3, 'sparse') |
| - | 13.0±0.1ms | 1.31±0.01ms | 0.1 | polys.TimeSUBRESULTANTS_SparseNonMonicQuadratic.time_op(5, 'dense') |
| - | 13.9±0.3ms | 141±1μs | 0.01 | polys.TimeSUBRESULTANTS_SparseNonMonicQuadratic.time_op(5, 'sparse') |
| - | 132±0.9μs | 75.1±0.3μs | 0.57 | solve.TimeMatrixOperations.time_rref(3, 0) |
| - | 251±2μs | 89.4±0.1μs | 0.36 | solve.TimeMatrixOperations.time_rref(4, 0) |
| - | 24.3±0.1ms | 10.1±0.03ms | 0.42 | solve.TimeSolveLinSys189x49.time_solve_lin_sys |
| - | 28.8±0.2ms | 15.6±0.08ms | 0.54 | solve.TimeSparseSystem.time_linsolve_Aaug(20) |
| - | 55.1±0.4ms | 24.8±0.05ms | 0.45 | solve.TimeSparseSystem.time_linsolve_Aaug(30) |
| - | 28.4±0.07ms | 15.3±0.1ms | 0.54 | solve.TimeSparseSystem.time_linsolve_Ab(20) |
| - | 55.2±0.3ms | 24.6±0.1ms | 0.45 | solve.TimeSparseSystem.time_linsolve_Ab(30) |
Full benchmark results can be found as artifacts in GitHub Actions |
References to other Issues or PRs
Backport of gh-26058 to 1.13 release branch.
Brief description of what is fixed or changed
Other comments
Release Notes
iter_values
anditer_items
are added for lazy iteration over the nonzero elements of aMatrix
. A Matrix methodfrom_dok
is added for efficient direct construction of sparse matrices. Some basic matrix operations are made faster by using these methods.