Skip to content

Different results for batch size 1 Variables #1984

@ethanluoyc

Description

@ethanluoyc

pytorch version: '0.1.12_2'

Run this snippet (The required serialised tensor has been included in the attachment.

import torch
from torch.autograd import Variable
from torch import nn

torch.manual_seed(0)

x_restored = Variable(torch.load('x.pth'), requires_grad=False)
x_res_repeated = x_restored.repeat(10, 1)

class Network(nn.Module):
    def __init__(self, dim_in, dim_out):
        super(Network, self).__init__()
        self.m = nn.Sequential(
            nn.Linear(dim_in, 100),
            nn.BatchNorm1d(100),
            nn.ReLU(),
            nn.Linear(100, 100),
            nn.BatchNorm1d(100),
            nn.ReLU(),
            nn.Linear(100, dim_out*2)
        )

    def forward(self, X):
        return self.m(X)

net = Network(x_restored.size()[1], 2)
print(net(x_restored))
print(net(x_res_repeated))

The output

Variable containing:
1.00000e-02 *
 -0.5704 -3.7342 -3.6541  7.4486
[torch.FloatTensor of size 1x4]

Variable containing:
1.00000e-02 *
 -0.5703 -3.7480 -3.6610  7.4439
 -0.5703 -3.7480 -3.6610  7.4439
 -0.5703 -3.7480 -3.6610  7.4439
 -0.5703 -3.7480 -3.6610  7.4439
 -0.5703 -3.7480 -3.6610  7.4439
 -0.5703 -3.7480 -3.6610  7.4439
 -0.5703 -3.7480 -3.6610  7.4439
 -0.5703 -3.7480 -3.6610  7.4439
 -0.4867 -3.7301 -3.6103  7.4878
 -0.4867 -3.7301 -3.6103  7.4878
[torch.FloatTensor of size 10x4]

issue.zip

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions