Skip to content

[ONNX] Support of AvgPool2D when ceil_mode is True has disappeared with Torch 2.0 #101397

@david-PHR

Description

@david-PHR

🐛 Describe the bug

Hello,

I cannot export a model ONNX models with AvgPool2D and ceil_mode=True with PyTorch 2.0.1. This is working with PyTorch 1.13

Here is a sample code compatible with PyTorch 1.13 but not with PyTorch 2.0.1:

import torch
from torch import nn
from functools import partial
class test(nn.Module):
    def __init__(self, in_channels, out_channels):
        super().__init__()
        norm_layer = partial(nn.BatchNorm2d, eps=0.0009)
        self.avgpool = nn.AvgPool2d((2, 2), stride=2, ceil_mode=True, count_include_pad=False)
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False)
        self.norm = norm_layer(out_channels)

    def forward(self, x):
        return self.norm(self.conv(self.avgpool(x)))

model = test(8, 16)
model = model.cuda().eval()
with torch.inference_mode():
    inputs = torch.randn(2,8,64,64, device='cuda')
    # Export the model
    torch.onnx.export(model,               # model being run
                    inputs,                         # model input (or a tuple for multiple inputs)
                    "model.onnx",   # where to save the model (can be a file or file-like object)
                    export_params=True,        # store the trained parameter weights inside the model file
                    opset_version=16,          # the ONNX version to export the model to
                    do_constant_folding=True,  # whether to execute constant folding for optimization
                    dynamic_axes = {'input_0':{3: "x", 2: "y"}, 'output_0':{3: "x", 2: "y"}},
                    input_names = ['input_0'],
                    output_names = ['output_0'])

The produced error message with PyTorch 2.0.1:

torch.onnx.errors.SymbolicValueError: Unsupported: ONNX export of operator get_pool_ceil_padding, input size not accessible. Please feel free to request support or submit a pull request on PyTorch GitHub: https://github.com/pytorch/pytorch/issues  [Caused by the value '0 defined in (%0 : Float(2, 8, *, *, strides=[32768, 4096, 64, 1], requires_grad=0, device=cuda:0), %conv.weight : Float(16, 8, 1, 1, strides=[8, 1, 1, 1], requires_grad=1, device=cuda:0), %norm.weight : Float(16, strides=[1], requires_grad=1, device=cuda:0), %norm.bias : Float(16, strides=[1], requires_grad=1, device=cuda:0), %norm.running_mean : Float(16, strides=[1], requires_grad=0, device=cuda:0), %norm.running_var : Float(16, strides=[1], requires_grad=0, device=cuda:0), %norm.num_batches_tracked : Long(requires_grad=0, device=cuda:0) = prim::Param()
)' (type 'Tensor') in the TorchScript graph. The containing node has kind 'prim::Param'.]

    Inputs:
        Empty
    Outputs:
        #0: 0 defined in (%0 : Float(2, 8, *, *, strides=[32768, 4096, 64, 1], requires_grad=0, device=cuda:0), %conv.weight : Float(16, 8, 1, 1, strides=[8, 1, 1, 1], requires_grad=1, device=cuda:0), %norm.weight : Float(16, strides=[1], requires_grad=1, device=cuda:0), %norm.bias : Float(16, strides=[1], requires_grad=1, device=cuda:0), %norm.running_mean : Float(16, strides=[1], requires_grad=0, device=cuda:0), %norm.running_var : Float(16, strides=[1], requires_grad=0, device=cuda:0), %norm.num_batches_tracked : Long(requires_grad=0, device=cuda:0) = prim::Param()
    )  (type 'Tensor')
        #1: conv.weight defined in (%0 : Float(2, 8, *, *, strides=[32768, 4096, 64, 1], requires_grad=0, device=cuda:0), %conv.weight : Float(16, 8, 1, 1, strides=[8, 1, 1, 1], requires_grad=1, device=cuda:0), %norm.weight : Float(16, strides=[1], requires_grad=1, device=cuda:0), %norm.bias : Float(16, strides=[1], requires_grad=1, device=cuda:0), %norm.running_mean : Float(16, strides=[1], requires_grad=0, device=cuda:0), %norm.running_var : Float(16, strides=[1], requires_grad=0, device=cuda:0), %norm.num_batches_tracked : Long(requires_grad=0, device=cuda:0) = prim::Param()
    )  (type 'Tensor')
        #2: norm.weight defined in (%0 : Float(2, 8, *, *, strides=[32768, 4096, 64, 1], requires_grad=0, device=cuda:0), %conv.weight : Float(16, 8, 1, 1, strides=[8, 1, 1, 1], requires_grad=1, device=cuda:0), %norm.weight : Float(16, strides=[1], requires_grad=1, device=cuda:0), %norm.bias : Float(16, strides=[1], requires_grad=1, device=cuda:0), %norm.running_mean : Float(16, strides=[1], requires_grad=0, device=cuda:0), %norm.running_var : Float(16, strides=[1], requires_grad=0, device=cuda:0), %norm.num_batches_tracked : Long(requires_grad=0, device=cuda:0) = prim::Param()
    )  (type 'Tensor')
        #3: norm.bias defined in (%0 : Float(2, 8, *, *, strides=[32768, 4096, 64, 1], requires_grad=0, device=cuda:0), %conv.weight : Float(16, 8, 1, 1, strides=[8, 1, 1, 1], requires_grad=1, device=cuda:0), %norm.weight : Float(16, strides=[1], requires_grad=1, device=cuda:0), %norm.bias : Float(16, strides=[1], requires_grad=1, device=cuda:0), %norm.running_mean : Float(16, strides=[1], requires_grad=0, device=cuda:0), %norm.running_var : Float(16, strides=[1], requires_grad=0, device=cuda:0), %norm.num_batches_tracked : Long(requires_grad=0, device=cuda:0) = prim::Param()
    )  (type 'Tensor')
        #4: norm.running_mean defined in (%0 : Float(2, 8, *, *, strides=[32768, 4096, 64, 1], requires_grad=0, device=cuda:0), %conv.weight : Float(16, 8, 1, 1, strides=[8, 1, 1, 1], requires_grad=1, device=cuda:0), %norm.weight : Float(16, strides=[1], requires_grad=1, device=cuda:0), %norm.bias : Float(16, strides=[1], requires_grad=1, device=cuda:0), %norm.running_mean : Float(16, strides=[1], requires_grad=0, device=cuda:0), %norm.running_var : Float(16, strides=[1], requires_grad=0, device=cuda:0), %norm.num_batches_tracked : Long(requires_grad=0, device=cuda:0) = prim::Param()
    )  (type 'Tensor')
        #5: norm.running_var defined in (%0 : Float(2, 8, *, *, strides=[32768, 4096, 64, 1], requires_grad=0, device=cuda:0), %conv.weight : Float(16, 8, 1, 1, strides=[8, 1, 1, 1], requires_grad=1, device=cuda:0), %norm.weight : Float(16, strides=[1], requires_grad=1, device=cuda:0), %norm.bias : Float(16, strides=[1], requires_grad=1, device=cuda:0), %norm.running_mean : Float(16, strides=[1], requires_grad=0, device=cuda:0), %norm.running_var : Float(16, strides=[1], requires_grad=0, device=cuda:0), %norm.num_batches_tracked : Long(requires_grad=0, device=cuda:0) = prim::Param()
    )  (type 'Tensor')
        #6: norm.num_batches_tracked defined in (%0 : Float(2, 8, *, *, strides=[32768, 4096, 64, 1], requires_grad=0, device=cuda:0), %conv.weight : Float(16, 8, 1, 1, strides=[8, 1, 1, 1], requires_grad=1, device=cuda:0), %norm.weight : Float(16, strides=[1], requires_grad=1, device=cuda:0), %norm.bias : Float(16, strides=[1], requires_grad=1, device=cuda:0), %norm.running_mean : Float(16, strides=[1], requires_grad=0, device=cuda:0), %norm.running_var : Float(16, strides=[1], requires_grad=0, device=cuda:0), %norm.num_batches_tracked : Long(requires_grad=0, device=cuda:0) = prim::Param()
    )  (type 'Tensor')
    

Here is the example of the ONNX graph produced with Torch 1.13 :
Screenshot 2023-05-15 at 10 20 02

Is there any fix plan soon to put back the support of AvgPool2D ONNX operator when ceil_mode=True ?

Thanks!

Versions

PyTorch version: 2.0.1+cu117
Is debug build: False
CUDA used to build PyTorch: 11.7
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.2 LTS (x86_64)
GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0
Clang version: Could not collect
CMake version: version 3.26.3
Libc version: glibc-2.35

Python version: 3.9.16 (main, Mar  8 2023, 14:00:05)  [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-71-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA GeForce RTX 3090
GPU 1: NVIDIA GeForce RTX 3090
GPU 2: NVIDIA GeForce RTX 3090
GPU 3: NVIDIA GeForce RTX 3090

Nvidia driver version: 520.61.05
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Address sizes:                   48 bits physical, 48 bits virtual
Byte Order:                      Little Endian
CPU(s):                          48
On-line CPU(s) list:             0-47
Vendor ID:                       AuthenticAMD
Model name:                      AMD Ryzen Threadripper PRO 5965WX 24-Cores
CPU family:                      25
Model:                           8
Thread(s) per core:              2
Core(s) per socket:              24
Socket(s):                       1
Stepping:                        2
BogoMIPS:                        7585.66
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm
Virtualization:                  AMD-V
L1d cache:                       768 KiB (24 instances)
L1i cache:                       768 KiB (24 instances)
L2 cache:                        12 MiB (24 instances)
L3 cache:                        128 MiB (4 instances)
NUMA node(s):                    1
NUMA node0 CPU(s):               0-47
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:              Not affected
Vulnerability Mds:               Not affected
Vulnerability Meltdown:          Not affected
Vulnerability Mmio stale data:   Not affected
Vulnerability Retbleed:          Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:        Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Not affected

Versions of relevant libraries:
[pip3] numpy==1.24.3
[pip3] torch==2.0.1
[pip3] triton==2.0.0
[conda] numpy                     1.24.3                   pypi_0    pypi
[conda] torch                     2.0.1                    pypi_0    pypi
[conda] triton                    2.0.0                    pypi_0    pypi

cc @ezyang @gchanan @zou3519

Metadata

Metadata

Assignees

Labels

high prioritymodule: onnxRelated to torch.onnxmodule: regressionIt used to work, and now it doesn'ttriagedThis issue has been looked at a team member, and triaged and prioritized into an appropriate module

Type

No type

Projects

Status

Done

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions