Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).

### Added

- Added graph mode sampling option with bidirectional sampling support ([#7199](https://github.com/pyg-team/pytorch_geometric/pull/7199))
- Added subgraph type sampling option with bidirectional edge support ([#7199](https://github.com/pyg-team/pytorch_geometric/pull/7199), [#7200](https://github.com/pyg-team/pytorch_geometric/pull/7200))
- Added support for `"any"`-reductions in `scatter` ([#7198](https://github.com/pyg-team/pytorch_geometric/pull/7198))
- Added manual sampling interface to `NodeLoader` and `LinkLoader` ([#7197](https://github.com/pyg-team/pytorch_geometric/pull/7197))
- Extending `torch.sparse` support ([#7155](https://github.com/pyg-team/pytorch_geometric/pull/7155))
Expand Down
37 changes: 18 additions & 19 deletions test/loader/test_link_neighbor_loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,14 +17,14 @@ def unique_edge_pairs(edge_index):


@onlyNeighborSampler
@pytest.mark.parametrize('directed', [True]) # TODO re-enable undirected mode
@pytest.mark.parametrize('subgraph_type', ['directional', 'bidirectional'])
@pytest.mark.parametrize('neg_sampling_ratio', [None, 1.0])
@pytest.mark.parametrize('filter_per_worker', [True, False])
def test_homo_link_neighbor_loader_basic(directed, neg_sampling_ratio,
def test_homo_link_neighbor_loader_basic(subgraph_type, neg_sampling_ratio,
filter_per_worker):
pos_edge_index = get_random_edge_index(100, 50, 500)
neg_edge_index = get_random_edge_index(100, 50, 500)
neg_edge_index[1, :] += 50
pos_edge_index = get_random_edge_index(50, 50, 500)
neg_edge_index = get_random_edge_index(50, 50, 500)
neg_edge_index += 50

edge_label_index = torch.cat([pos_edge_index, neg_edge_index], dim=-1)
edge_label = torch.cat([torch.ones(500), torch.zeros(500)], dim=0)
Expand All @@ -41,7 +41,7 @@ def test_homo_link_neighbor_loader_basic(directed, neg_sampling_ratio,
batch_size=20,
edge_label_index=edge_label_index,
edge_label=edge_label if neg_sampling_ratio is None else None,
directed=directed,
subgraph_type=subgraph_type,
neg_sampling_ratio=neg_sampling_ratio,
shuffle=True,
filter_per_worker=filter_per_worker,
Expand Down Expand Up @@ -91,9 +91,9 @@ def test_homo_link_neighbor_loader_basic(directed, neg_sampling_ratio,


@onlyNeighborSampler
@pytest.mark.parametrize('directed', [True]) # TODO re-enable undirected mode
@pytest.mark.parametrize('subgraph_type', ['directional', 'bidirectional'])
@pytest.mark.parametrize('neg_sampling_ratio', [None, 1.0])
def test_hetero_link_neighbor_loader_basic(directed, neg_sampling_ratio):
def test_hetero_link_neighbor_loader_basic(subgraph_type, neg_sampling_ratio):
data = HeteroData()

data['paper'].x = torch.arange(100)
Expand All @@ -111,7 +111,7 @@ def test_hetero_link_neighbor_loader_basic(directed, neg_sampling_ratio):
num_neighbors=[-1] * 2,
edge_label_index=('paper', 'author'),
batch_size=20,
directed=directed,
subgraph_type=subgraph_type,
neg_sampling_ratio=neg_sampling_ratio,
shuffle=True,
)
Expand All @@ -121,7 +121,6 @@ def test_hetero_link_neighbor_loader_basic(directed, neg_sampling_ratio):

for batch in loader:
assert isinstance(batch, HeteroData)
assert len(batch) == 7 + (1 if neg_sampling_ratio is not None else 0)
if neg_sampling_ratio is None:
# Assert only positive samples are present in the original graph:
edge_index = unique_edge_pairs(batch['paper', 'author'].edge_index)
Expand All @@ -136,8 +135,8 @@ def test_hetero_link_neighbor_loader_basic(directed, neg_sampling_ratio):


@onlyNeighborSampler
@pytest.mark.parametrize('directed', [True]) # TODO re-enable undirected mode
def test_hetero_link_neighbor_loader_loop(directed):
@pytest.mark.parametrize('subgraph_type', ['directional', 'bidirectional'])
def test_hetero_link_neighbor_loader_loop(subgraph_type):
data = HeteroData()

data['paper'].x = torch.arange(100)
Expand All @@ -147,9 +146,13 @@ def test_hetero_link_neighbor_loader_loop(directed):
data['paper', 'author'].edge_index = get_random_edge_index(100, 200, 1000)
data['author', 'paper'].edge_index = get_random_edge_index(200, 100, 1000)

loader = LinkNeighborLoader(data, num_neighbors=[-1] * 2,
edge_label_index=('paper', 'paper'),
batch_size=20, directed=directed)
loader = LinkNeighborLoader(
data,
num_neighbors=[-1] * 2,
edge_label_index=('paper', 'paper'),
batch_size=20,
subgraph_type=subgraph_type,
)

for batch in loader:
assert batch['paper'].x.size(0) <= 100
Expand Down Expand Up @@ -279,15 +282,13 @@ def test_custom_hetero_link_neighbor_loader():
num_neighbors=[-1] * 2,
edge_label_index=('paper', 'to', 'author'),
batch_size=20,
directed=True,
)

loader2 = LinkNeighborLoader(
(feature_store, graph_store),
num_neighbors=[-1] * 2,
edge_label_index=('paper', 'to', 'author'),
batch_size=20,
directed=True,
)

assert str(loader1) == str(loader2)
Expand Down Expand Up @@ -377,7 +378,6 @@ def test_homo_link_neighbor_loader_triplet(disjoint, temporal, amount):
edge_label_index=data.edge_label_index,
edge_label_time=edge_label_time,
time_attr=time_attr,
directed=True,
disjoint=disjoint,
neg_sampling=dict(mode='triplet', amount=amount),
shuffle=True,
Expand Down Expand Up @@ -472,7 +472,6 @@ def test_hetero_link_neighbor_loader_triplet(disjoint, temporal, amount):
edge_label_index=index,
edge_label_time=edge_label_time,
time_attr=time_attr,
directed=True,
disjoint=disjoint,
neg_sampling=dict(mode='triplet', amount=amount, weight=weight),
shuffle=True,
Expand Down
Loading