Skip to content

[BUG]: use_train_data=True/False #3583

@hipotures

Description

@hipotures

pycaret version checks

Issue Description

Plots for use_train_data=False and use_train_data=True return the same values/graphs/data. Tested on my own data and test code from repo: pycaret/tests/test_classification_plots.py

Reproducible Example

for plot in available_plots:
    pycaret.classification.plot_model(model, plot=plot, use_train_data=False)
    pycaret.classification.plot_model(model, plot=plot, use_train_data=True)

Expected Behavior

Values from train/test data should be different

Actual Results

use_train_data=False and use_train_data=False create the same results

Installed Versions

System: python: 3.7.12 | packaged by conda-forge | (default, Oct 26 2021, 06:08:21) [GCC 9.4.0] executable: /opt/conda/bin/python machine: Linux-4.19.0-23-cloud-amd64-x86_64-with-debian-bullseye-sid

PyCaret required dependencies:
pip: 23.0.1
setuptools: 67.6.0
pycaret: 3.0.2
IPython: 7.34.0
ipywidgets: 8.0.5
tqdm: 4.64.1
numpy: 1.21.6
pandas: 1.3.5
jinja2: 3.1.2
scipy: 1.7.3
joblib: 1.2.0
sklearn: 1.0.2
pyod: 1.0.9
imblearn: 0.10.1
category_encoders: 2.6.1
lightgbm: 3.3.5
numba: 0.56.4
requests: 2.28.2
matplotlib: 3.5.3
scikitplot: 0.3.7
yellowbrick: 1.5
plotly: 5.13.1
kaleido: 0.2.1
statsmodels: 0.13.5
sktime: 0.17.0
tbats: 1.1.3
pmdarima: 2.0.3
psutil: 5.9.3

PyCaret optional dependencies:
shap: 0.41.0
interpret: 0.4.1
umap: 0.5.3
pandas_profiling: 3.6.6
explainerdashboard: 0.3.8
autoviz: 0.1.604
fairlearn: 0.7.0
xgboost: 1.6.2
catboost: 1.2
kmodes: 0.12.2
mlxtend: 0.22.0
statsforecast: 1.5.0
tune_sklearn: 0.4.5
ray: 2.3.1
hyperopt: 0.2.7
optuna: 3.1.1
skopt: 0.9.0
mlflow: 1.30.1
gradio: 3.32.0
fastapi: 0.95.0
uvicorn: 0.21.1
m2cgen: 0.10.0
evidently: 0.2.8
fugue: 0.8.3
streamlit: Not installed
prophet: 1.1.3

Metadata

Metadata

Assignees

Labels

Type

No type

Projects

No projects

Milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions