Example code for using Transport Monte Carlo --- using random transport plan and optimization to rapidly estimate the posterior distribution
-
Sampling from a Normal Mixture: https://nbviewer.jupyter.org/github/leoduan/TransportMonteCarlo/blob/master/gaussianMixtureTMC.ipynb
-
Sampling from a multi-modal distribution (Liang 2005): https://nbviewer.jupyter.org/github/leoduan/TransportMonteCarlo/blob/master/MultimodalTMC.ipynb
-
High-dimensional regression using the regularized horseshoe prior (Piironen and Vehtari 2017) : https://nbviewer.jupyter.org/github/leoduan/TransportMonteCarlo/blob/master/regularizedHorseshoe.ipynb
-
Binary adjacency matrix estimation under degree regularization: https://github.com/leoduan/TransportMonteCarlo/blob/master/edgeSamplingUnderDegreeReg.ipynb
For other target distribution, simply modify the log-prior-likelihood function.
For reference, see Leo L. Duan. Transport Monte Carlo 2019+. http://arxiv.org/abs/1907.10448