Numpy no longer automatically truncates Python integers to the destination type. So the following code causes an overflow error now: ``` input = np.empty((640, 480), dtype=np.uint8, order='F') for y in range(480): for x in range(640): input[x, y] = x ^ (y + 1) ``` We can recover the old behavior by manually masking. ``` input = np.empty((640, 480), dtype=np.uint8, order='F') for y in range(480): for x in range(640): input[x, y] = (x ^ (y + 1)) & 0xFF ```