-
Notifications
You must be signed in to change notification settings - Fork 30.2k
Closed
huggingface/trl
#1707Description
System Info
I use the SFTTrainer for my qlora fine-tuning for Mistral Instruct 2 model. I use unsloth to make my training faster. I have run the code multiple times before but today I got the AttributeError: 'TrainingArguments' object has no attribute 'packing' error immediatly.
Are there anyone who got the same error and know the solution?
Thank a lot!
I run my code on colab -T4
I have used the following libraries:
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install --no-deps xformers trl peft accelerate bitsandbytes
my error explanation also:
AttributeError Traceback (most recent call last)
[<ipython-input-22-fee37d14dff4>](https://localhost:8080/#) in <cell line: 13>()
11
12
---> 13 trainer = SFTTrainer(
14 model = model,
15 tokenizer = tokenizer,
1 frames
[/usr/local/lib/python3.10/dist-packages/trl/trainer/sft_trainer.py](https://localhost:8080/#) in __init__(self, model, args, data_collator, train_dataset, eval_dataset, tokenizer, model_init, compute_metrics, callbacks, optimizers, preprocess_logits_for_metrics, peft_config, dataset_text_field, packing, formatting_func, max_seq_length, infinite, num_of_sequences, chars_per_token, dataset_num_proc, dataset_batch_size, neftune_noise_alpha, model_init_kwargs, dataset_kwargs, eval_packing)
187 args.eval_packing = eval_packing
188
--> 189 if args.packing and data_collator is not None and isinstance(data_collator, DataCollatorForCompletionOnlyLM):
190 raise ValueError(
191 "You passed a `DataCollatorForCompletionOnlyLM` to the SFTTrainer. This is not compatible with the `packing` argument."
AttributeError: 'TrainingArguments' object has no attribute 'packing'
Who can help?
No response
Information
- The official example scripts
- My own modified scripts
Tasks
- An officially supported task in the
examples
folder (such as GLUE/SQuAD, ...) - My own task or dataset (give details below)
Reproduction
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=train_data,
dataset_text_field="text",
max_seq_length=max_seq_length,
dataset_num_proc=2,
packing=False, # Can make training 5x faster for short sequences.
args=TrainingArguments(
per_device_train_batch_size=2,
gradient_accumulation_steps=4,
warmup_steps=5,
max_steps=60, # Set num_train_epochs = 1 for full training runs
learning_rate=2e-4,
fp16=not is_bfloat16_supported(),
bf16=is_bfloat16_supported(),
logging_steps=1,
optim="adamw_8bit",
weight_decay=0.01,
lr_scheduler_type="linear",
seed=3407,
save_steps=1,
output_dir=output_dir,
),
)
Expected behavior
My code should run without error which is AttributeError: 'TrainingArguments' object has no attribute 'packing'
Metadata
Metadata
Assignees
Labels
No labels