-
Notifications
You must be signed in to change notification settings - Fork 30.2k
Open
Labels
WIPLabel your PR/Issue with WIP for some long outstanding Issues/PRs that are work in progressLabel your PR/Issue with WIP for some long outstanding Issues/PRs that are work in progress
Description
System Info
Transformers=4.31
Torch=2.01
Cuda=11.8
Python=3.10
A100 GPU 80GB
Who can help?
@ArthurZucker , @younesbelkada , @gante
Information
- The official example scripts
- My own modified scripts
Tasks
- An officially supported task in the
examples
folder (such as GLUE/SQuAD, ...) - My own task or dataset (give details below)
Reproduction
Running the following examples will produce different outputs for the first input.
from transformers import LlamaForCausalLM, LlamaTokenizer
from transformers import GenerationConfig
import torch
if __name__ == '__main__':
name = 'yahma/llama-7b-hf'
tokenizer = LlamaTokenizer.from_pretrained(
name,
padding_side="left",
trust_remote_code=True)
tokenizer.pad_token_id = 0 if tokenizer.pad_token_id is None else tokenizer.pad_token_id
model = LlamaForCausalLM.from_pretrained(
name,
device_map="auto",
torch_dtype=torch.bfloat16,
trust_remote_code=True)
question = [
'Can you explain to me what is the concept of deep learning and how it can be applied to NLP?',
'Where am I supposed to eat dinner',
'How hard is it to find a doctor in Canada',
'What is the best price of vegatables',
'How can somehow be so mean',
'How can we get the severance pay',
'What type of president is this?'
'How is the weather today?'
]
batch = tokenizer(
question,
padding=True,
return_tensors="pt",
)
with torch.no_grad():
output_ids = model.generate(
batch.input_ids.to(model.device),
attention_mask=batch.attention_mask.to(model.device),
pad_token_id=tokenizer.pad_token_id,
generation_config=GenerationConfig(do_sample=False, max_new_tokens=50, trust_remote_code=True)
)
output_strs = []
for output_id in output_ids.tolist()[:4]:
tmp = tokenizer.decode(output_id[batch.input_ids.shape[-1]:], skip_special_tokens=True)
output_strs.append(tmp)
print(tmp)
print('----------------------------------------------------')
print('############### Now we decrease the batch size #############################')
question = [
'Can you explain to me what is the concept of deep learning and how it can be applied to NLP?',
'Where am I supposed to eat dinner',
'How hard is it to find a doctor in Canada',
'What is the best price of vegatables',
]
batch = tokenizer(
question,
padding=True,
return_tensors="pt",
)
with torch.no_grad():
output_ids = model.generate(
batch.input_ids.to(model.device),
attention_mask=batch.attention_mask.to(model.device),
pad_token_id=tokenizer.pad_token_id,
generation_config=GenerationConfig(do_sample=False, max_new_tokens=50, trust_remote_code=True)
)
output_strs = []
for output_id in output_ids.tolist():
tmp = tokenizer.decode(output_id[batch.input_ids.shape[-1]:], skip_special_tokens=True)
output_strs.append(tmp)
print(tmp)
print('----------------------------------------------------')
Expected behavior
The produced outputs are supposed to be the same and should not be affected by the batch size.
Metadata
Metadata
Assignees
Labels
WIPLabel your PR/Issue with WIP for some long outstanding Issues/PRs that are work in progressLabel your PR/Issue with WIP for some long outstanding Issues/PRs that are work in progress