Skip to content

Conversation

mariosasko
Copy link
Collaborator

... to be consistent with transformers and huggingface_hub.

@HuggingFaceDocBuilderDev
Copy link

HuggingFaceDocBuilderDev commented Jun 28, 2023

The documentation is not available anymore as the PR was closed or merged.

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006134 / 0.011353 (-0.005219) 0.003816 / 0.011008 (-0.007193) 0.098226 / 0.038508 (0.059718) 0.036830 / 0.023109 (0.013721) 0.314551 / 0.275898 (0.038653) 0.372251 / 0.323480 (0.048771) 0.004762 / 0.007986 (-0.003224) 0.003041 / 0.004328 (-0.001287) 0.077651 / 0.004250 (0.073401) 0.052445 / 0.037052 (0.015393) 0.324632 / 0.258489 (0.066143) 0.365724 / 0.293841 (0.071883) 0.028069 / 0.128546 (-0.100477) 0.008444 / 0.075646 (-0.067203) 0.312767 / 0.419271 (-0.106505) 0.047773 / 0.043533 (0.004240) 0.305317 / 0.255139 (0.050178) 0.332007 / 0.283200 (0.048807) 0.018985 / 0.141683 (-0.122698) 1.538022 / 1.452155 (0.085868) 1.575898 / 1.492716 (0.083182)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.204780 / 0.018006 (0.186774) 0.428125 / 0.000490 (0.427635) 0.003454 / 0.000200 (0.003254) 0.000078 / 0.000054 (0.000024)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.025064 / 0.037411 (-0.012348) 0.099419 / 0.014526 (0.084893) 0.111068 / 0.176557 (-0.065489) 0.169775 / 0.737135 (-0.567361) 0.112067 / 0.296338 (-0.184271)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.429642 / 0.215209 (0.214433) 4.275556 / 2.077655 (2.197901) 1.914658 / 1.504120 (0.410539) 1.706556 / 1.541195 (0.165361) 1.754228 / 1.468490 (0.285738) 0.563669 / 4.584777 (-4.021108) 3.391501 / 3.745712 (-0.354211) 1.791517 / 5.269862 (-3.478345) 1.030704 / 4.565676 (-3.534973) 0.070882 / 0.424275 (-0.353393) 0.011351 / 0.007607 (0.003744) 0.529438 / 0.226044 (0.303394) 5.294316 / 2.268929 (3.025387) 2.344653 / 55.444624 (-53.099972) 1.997468 / 6.876477 (-4.879009) 2.108932 / 2.142072 (-0.033140) 0.676794 / 4.805227 (-4.128433) 0.135058 / 6.500664 (-6.365607) 0.065857 / 0.075469 (-0.009612)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.231864 / 1.841788 (-0.609924) 13.986694 / 8.074308 (5.912386) 13.306600 / 10.191392 (3.115208) 0.145520 / 0.680424 (-0.534904) 0.016717 / 0.534201 (-0.517484) 0.366303 / 0.579283 (-0.212980) 0.391637 / 0.434364 (-0.042727) 0.425445 / 0.540337 (-0.114892) 0.507719 / 1.386936 (-0.879217)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006236 / 0.011353 (-0.005116) 0.003766 / 0.011008 (-0.007242) 0.076794 / 0.038508 (0.038286) 0.037210 / 0.023109 (0.014101) 0.378387 / 0.275898 (0.102489) 0.425456 / 0.323480 (0.101977) 0.004694 / 0.007986 (-0.003291) 0.002921 / 0.004328 (-0.001407) 0.076985 / 0.004250 (0.072735) 0.052188 / 0.037052 (0.015136) 0.394385 / 0.258489 (0.135896) 0.432527 / 0.293841 (0.138686) 0.029091 / 0.128546 (-0.099455) 0.008364 / 0.075646 (-0.067282) 0.082583 / 0.419271 (-0.336689) 0.042928 / 0.043533 (-0.000605) 0.375321 / 0.255139 (0.120182) 0.391719 / 0.283200 (0.108519) 0.019388 / 0.141683 (-0.122295) 1.550644 / 1.452155 (0.098489) 1.604882 / 1.492716 (0.112166)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.236859 / 0.018006 (0.218853) 0.418528 / 0.000490 (0.418039) 0.000388 / 0.000200 (0.000188) 0.000059 / 0.000054 (0.000004)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.025548 / 0.037411 (-0.011863) 0.100644 / 0.014526 (0.086118) 0.109102 / 0.176557 (-0.067455) 0.161694 / 0.737135 (-0.575441) 0.112088 / 0.296338 (-0.184250)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.484128 / 0.215209 (0.268919) 4.849952 / 2.077655 (2.772297) 2.512769 / 1.504120 (1.008649) 2.303295 / 1.541195 (0.762100) 2.356699 / 1.468490 (0.888209) 0.564181 / 4.584777 (-4.020596) 3.421393 / 3.745712 (-0.324319) 2.570875 / 5.269862 (-2.698987) 1.474307 / 4.565676 (-3.091370) 0.068035 / 0.424275 (-0.356240) 0.011300 / 0.007607 (0.003693) 0.587867 / 0.226044 (0.361823) 5.862447 / 2.268929 (3.593519) 3.004017 / 55.444624 (-52.440607) 2.664989 / 6.876477 (-4.211488) 2.740020 / 2.142072 (0.597948) 0.680840 / 4.805227 (-4.124387) 0.137001 / 6.500664 (-6.363663) 0.068098 / 0.075469 (-0.007371)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.297362 / 1.841788 (-0.544426) 14.207891 / 8.074308 (6.133583) 14.087562 / 10.191392 (3.896170) 0.149514 / 0.680424 (-0.530910) 0.016566 / 0.534201 (-0.517635) 0.367602 / 0.579283 (-0.211681) 0.400692 / 0.434364 (-0.033671) 0.432907 / 0.540337 (-0.107431) 0.525924 / 1.386936 (-0.861012)

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006223 / 0.011353 (-0.005130) 0.003672 / 0.011008 (-0.007336) 0.097451 / 0.038508 (0.058943) 0.036243 / 0.023109 (0.013133) 0.375650 / 0.275898 (0.099752) 0.431652 / 0.323480 (0.108172) 0.004758 / 0.007986 (-0.003227) 0.002941 / 0.004328 (-0.001387) 0.077383 / 0.004250 (0.073132) 0.055342 / 0.037052 (0.018289) 0.390335 / 0.258489 (0.131846) 0.427867 / 0.293841 (0.134026) 0.027619 / 0.128546 (-0.100927) 0.008244 / 0.075646 (-0.067402) 0.313499 / 0.419271 (-0.105773) 0.054987 / 0.043533 (0.011454) 0.394044 / 0.255139 (0.138905) 0.398784 / 0.283200 (0.115584) 0.026499 / 0.141683 (-0.115184) 1.496907 / 1.452155 (0.044753) 1.554465 / 1.492716 (0.061749)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.241197 / 0.018006 (0.223190) 0.427856 / 0.000490 (0.427366) 0.006264 / 0.000200 (0.006065) 0.000218 / 0.000054 (0.000164)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.025550 / 0.037411 (-0.011862) 0.104426 / 0.014526 (0.089901) 0.110310 / 0.176557 (-0.066246) 0.173813 / 0.737135 (-0.563322) 0.112129 / 0.296338 (-0.184209)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.458806 / 0.215209 (0.243597) 4.576351 / 2.077655 (2.498697) 2.265670 / 1.504120 (0.761550) 2.073230 / 1.541195 (0.532035) 2.135283 / 1.468490 (0.666793) 0.562506 / 4.584777 (-4.022271) 3.375101 / 3.745712 (-0.370611) 1.734393 / 5.269862 (-3.535469) 1.026622 / 4.565676 (-3.539054) 0.068144 / 0.424275 (-0.356131) 0.011092 / 0.007607 (0.003485) 0.562779 / 0.226044 (0.336734) 5.608256 / 2.268929 (3.339328) 2.706468 / 55.444624 (-52.738157) 2.381607 / 6.876477 (-4.494869) 2.451027 / 2.142072 (0.308954) 0.671590 / 4.805227 (-4.133637) 0.135749 / 6.500664 (-6.364915) 0.065389 / 0.075469 (-0.010080)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.244806 / 1.841788 (-0.596981) 14.042150 / 8.074308 (5.967841) 14.246612 / 10.191392 (4.055220) 0.134309 / 0.680424 (-0.546114) 0.017082 / 0.534201 (-0.517119) 0.366043 / 0.579283 (-0.213240) 0.400748 / 0.434364 (-0.033616) 0.425695 / 0.540337 (-0.114643) 0.509355 / 1.386936 (-0.877581)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006134 / 0.011353 (-0.005219) 0.003980 / 0.011008 (-0.007028) 0.078353 / 0.038508 (0.039845) 0.038011 / 0.023109 (0.014902) 0.375784 / 0.275898 (0.099886) 0.433619 / 0.323480 (0.110139) 0.004897 / 0.007986 (-0.003088) 0.002981 / 0.004328 (-0.001347) 0.077362 / 0.004250 (0.073112) 0.056108 / 0.037052 (0.019056) 0.395984 / 0.258489 (0.137495) 0.427397 / 0.293841 (0.133556) 0.029325 / 0.128546 (-0.099221) 0.008498 / 0.075646 (-0.067148) 0.082478 / 0.419271 (-0.336794) 0.044085 / 0.043533 (0.000552) 0.389923 / 0.255139 (0.134784) 0.391180 / 0.283200 (0.107980) 0.022452 / 0.141683 (-0.119231) 1.507758 / 1.452155 (0.055603) 1.530459 / 1.492716 (0.037743)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.230928 / 0.018006 (0.212922) 0.408484 / 0.000490 (0.407995) 0.000806 / 0.000200 (0.000606) 0.000067 / 0.000054 (0.000012)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.025183 / 0.037411 (-0.012228) 0.102292 / 0.014526 (0.087766) 0.108142 / 0.176557 (-0.068415) 0.161172 / 0.737135 (-0.575963) 0.114476 / 0.296338 (-0.181862)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.482978 / 0.215209 (0.267769) 4.816103 / 2.077655 (2.738448) 2.505567 / 1.504120 (1.001447) 2.302598 / 1.541195 (0.761404) 2.371238 / 1.468490 (0.902748) 0.567467 / 4.584777 (-4.017310) 3.363407 / 3.745712 (-0.382306) 1.746213 / 5.269862 (-3.523649) 1.035468 / 4.565676 (-3.530208) 0.068431 / 0.424275 (-0.355844) 0.011069 / 0.007607 (0.003462) 0.598241 / 0.226044 (0.372196) 5.953927 / 2.268929 (3.684999) 3.007493 / 55.444624 (-52.437132) 2.629399 / 6.876477 (-4.247078) 2.737201 / 2.142072 (0.595129) 0.682456 / 4.805227 (-4.122771) 0.137613 / 6.500664 (-6.363051) 0.067941 / 0.075469 (-0.007528)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.306015 / 1.841788 (-0.535772) 14.359240 / 8.074308 (6.284932) 14.187601 / 10.191392 (3.996209) 0.138612 / 0.680424 (-0.541812) 0.016708 / 0.534201 (-0.517493) 0.366365 / 0.579283 (-0.212918) 0.396982 / 0.434364 (-0.037382) 0.426939 / 0.540337 (-0.113398) 0.520064 / 1.386936 (-0.866872)

@mariosasko mariosasko marked this pull request as ready for review June 30, 2023 13:26
@mariosasko mariosasko requested a review from lhoestq June 30, 2023 13:26
Copy link
Member

@lhoestq lhoestq left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Cool ! AFAIK transformers and use_auth_token still uses use_auth_token for models no ? cc @LysandreJik

There is also the option of not having a deprecation message before we update all the scripts in transformers

@mariosasko
Copy link
Collaborator Author

mariosasko commented Jun 30, 2023

They use token and emit a deprecation warning if use_auth_token is passed instead (see https://github.com/huggingface/transformers/blob/78a2b19fc84ed55c65f4bf20a901edb7ceb73c5f/src/transformers/modeling_utils.py#L1933).

I think we can update the examples scripts after merging this PR.

@lhoestq
Copy link
Member

lhoestq commented Jun 30, 2023

I think we can update the examples scripts after merging this PR.

We should do a release before updated in the examples scripts no ? That's why it's an option to not have a deprecation warning until transformers and co are updated with the token arg

@mariosasko
Copy link
Collaborator Author

We should do a release before updated in the examples scripts no ? That's why it's an option to not have a deprecation warning until transformers and co are updated with the token arg

This would avoid the warning only for the latest datasets release. TBH, I don't think this is worth the hassle, considering how simple it is to remove it.

Copy link
Member

@lhoestq lhoestq left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Looks all good then, let us know @LysandreJik if it sounds good to you

@mariosasko mariosasko merged commit 819bb43 into main Jul 3, 2023
@mariosasko mariosasko deleted the deprecate-use_auth_token branch July 3, 2023 16:03
@github-actions
Copy link

github-actions bot commented Jul 3, 2023

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007644 / 0.011353 (-0.003709) 0.004667 / 0.011008 (-0.006341) 0.117347 / 0.038508 (0.078839) 0.050620 / 0.023109 (0.027510) 0.415402 / 0.275898 (0.139504) 0.485898 / 0.323480 (0.162418) 0.005848 / 0.007986 (-0.002138) 0.003736 / 0.004328 (-0.000592) 0.089798 / 0.004250 (0.085547) 0.069344 / 0.037052 (0.032292) 0.441684 / 0.258489 (0.183195) 0.468972 / 0.293841 (0.175131) 0.036637 / 0.128546 (-0.091909) 0.010219 / 0.075646 (-0.065427) 0.394293 / 0.419271 (-0.024978) 0.061462 / 0.043533 (0.017929) 0.409448 / 0.255139 (0.154309) 0.431557 / 0.283200 (0.148358) 0.027795 / 0.141683 (-0.113888) 1.837844 / 1.452155 (0.385690) 1.862683 / 1.492716 (0.369967)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.230500 / 0.018006 (0.212494) 0.483139 / 0.000490 (0.482649) 0.006517 / 0.000200 (0.006317) 0.000143 / 0.000054 (0.000088)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.033152 / 0.037411 (-0.004259) 0.133673 / 0.014526 (0.119147) 0.143853 / 0.176557 (-0.032704) 0.215254 / 0.737135 (-0.521882) 0.150676 / 0.296338 (-0.145662)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.503796 / 0.215209 (0.288587) 5.049981 / 2.077655 (2.972326) 2.399427 / 1.504120 (0.895307) 2.167635 / 1.541195 (0.626441) 2.257448 / 1.468490 (0.788958) 0.641298 / 4.584777 (-3.943479) 4.828676 / 3.745712 (1.082964) 4.346069 / 5.269862 (-0.923793) 2.103890 / 4.565676 (-2.461786) 0.079115 / 0.424275 (-0.345160) 0.013377 / 0.007607 (0.005770) 0.621207 / 0.226044 (0.395162) 6.190939 / 2.268929 (3.922011) 2.920129 / 55.444624 (-52.524495) 2.549225 / 6.876477 (-4.327252) 2.719221 / 2.142072 (0.577149) 0.790949 / 4.805227 (-4.014278) 0.172032 / 6.500664 (-6.328632) 0.077779 / 0.075469 (0.002310)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.432572 / 1.841788 (-0.409216) 21.000031 / 8.074308 (12.925723) 17.555093 / 10.191392 (7.363701) 0.166646 / 0.680424 (-0.513778) 0.020451 / 0.534201 (-0.513750) 0.488767 / 0.579283 (-0.090516) 0.737036 / 0.434364 (0.302672) 0.621694 / 0.540337 (0.081356) 0.732074 / 1.386936 (-0.654862)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.008198 / 0.011353 (-0.003155) 0.004987 / 0.011008 (-0.006021) 0.090714 / 0.038508 (0.052206) 0.053379 / 0.023109 (0.030270) 0.425199 / 0.275898 (0.149301) 0.514036 / 0.323480 (0.190556) 0.006043 / 0.007986 (-0.001943) 0.003888 / 0.004328 (-0.000441) 0.088294 / 0.004250 (0.084043) 0.073024 / 0.037052 (0.035971) 0.435983 / 0.258489 (0.177494) 0.514293 / 0.293841 (0.220452) 0.039451 / 0.128546 (-0.089095) 0.010439 / 0.075646 (-0.065207) 0.096885 / 0.419271 (-0.322387) 0.060165 / 0.043533 (0.016632) 0.421053 / 0.255139 (0.165914) 0.455545 / 0.283200 (0.172345) 0.027234 / 0.141683 (-0.114449) 1.768975 / 1.452155 (0.316820) 1.842853 / 1.492716 (0.350137)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.278940 / 0.018006 (0.260933) 0.480709 / 0.000490 (0.480219) 0.000436 / 0.000200 (0.000236) 0.000070 / 0.000054 (0.000016)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.034900 / 0.037411 (-0.002511) 0.144893 / 0.014526 (0.130368) 0.149567 / 0.176557 (-0.026989) 0.213200 / 0.737135 (-0.523935) 0.156735 / 0.296338 (-0.139604)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.535897 / 0.215209 (0.320687) 5.336998 / 2.077655 (3.259343) 2.685854 / 1.504120 (1.181734) 2.470177 / 1.541195 (0.928983) 2.547495 / 1.468490 (1.079004) 0.642830 / 4.584777 (-3.941947) 4.595866 / 3.745712 (0.850154) 2.186696 / 5.269862 (-3.083165) 1.317969 / 4.565676 (-3.247708) 0.079268 / 0.424275 (-0.345007) 0.013792 / 0.007607 (0.006185) 0.662236 / 0.226044 (0.436192) 6.604775 / 2.268929 (4.335847) 3.355888 / 55.444624 (-52.088736) 2.968911 / 6.876477 (-3.907565) 3.121862 / 2.142072 (0.979790) 0.794752 / 4.805227 (-4.010475) 0.170800 / 6.500664 (-6.329864) 0.078393 / 0.075469 (0.002924)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.601605 / 1.841788 (-0.240183) 20.743553 / 8.074308 (12.669245) 17.543968 / 10.191392 (7.352576) 0.221884 / 0.680424 (-0.458540) 0.020779 / 0.534201 (-0.513422) 0.479677 / 0.579283 (-0.099606) 0.516207 / 0.434364 (0.081843) 0.564046 / 0.540337 (0.023709) 0.711336 / 1.386936 (-0.675600)

@LysandreJik
Copy link
Member

Yes, sounds great! Thanks

Copy link
Member

@julien-c julien-c left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

note that anyways like transformers datasets already picks up the user's token automaticaly no?

@lhoestq
Copy link
Member

lhoestq commented Jul 5, 2023

yup

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

5 participants