Skip to content

Use default attribute values #4

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 7 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
220 changes: 111 additions & 109 deletions onnx/defs/generator/old.cc
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,116 @@ This operator produces a constant tensor. Exactly one of the provided attributes
or value_* must be specified.
)DOC";

void ConstantInference(InferenceContext& ctx) {
auto* value = ctx.getAttribute("value");
auto* sparse_value = ctx.getAttribute("sparse_value");
auto* value_int = ctx.getAttribute("value_int");
auto* value_ints = ctx.getAttribute("value_ints");
auto* value_float = ctx.getAttribute("value_float");
auto* value_floats = ctx.getAttribute("value_floats");
auto* value_string = ctx.getAttribute("value_string");
auto* value_strings = ctx.getAttribute("value_strings");

std::vector<bool> non_null_attr = {
(nullptr != value),
(nullptr != sparse_value),
(nullptr != value_int),
(nullptr != value_ints),
(nullptr != value_float),
(nullptr != value_floats),
(nullptr != value_string),
(nullptr != value_strings)};
if (std::count(non_null_attr.begin(), non_null_attr.end(), true) != 1) {
fail_shape_inference(
"One and only one of the attributes 'value', 'value_*' or 'sparse_value' must be specified for a Constant node.");
}

if (nullptr != value) {
// OpSchema::Verify check ensures that the attribute value has_t():
const TensorProto& tensor_proto = value->t();
updateOutputElemType(ctx, 0, tensor_proto.data_type());
updateOutputShape(ctx, 0, tensor_proto);
return;
}

if (nullptr != value_int) {
// OpSchema::Verify check ensures that the attribute value has_i():
if (!value_int->has_i()) {
fail_shape_inference("Attribute 'value_int' expect an integer.")
}
updateOutputElemType(ctx, 0, TensorProto::INT64);
updateOutputShape(ctx, 0, TensorShapeProto());
return;
}

if (nullptr != value_ints) {
// OpSchema::Verify check ensures that the attribute value has ints.
if (value_ints->ints_size() < 1) {
fail_shape_inference("Attribute 'value_ints' expect a list of integers.");
}
updateOutputElemType(ctx, 0, TensorProto::INT64);
appendDim(getOutputShape(ctx, 0), value_ints->ints_size());
return;
}

if (nullptr != value_float) {
// OpSchema::Verify check ensures that the attribute value has_i():
if (!value_float->has_f()) {
fail_shape_inference("Attribute 'value_float' expect a float.");
}
updateOutputElemType(ctx, 0, TensorProto::FLOAT);
updateOutputShape(ctx, 0, TensorShapeProto());
return;
}

if (nullptr != value_floats) {
// OpSchema::Verify check ensures that the attribute value has ints.
if (value_floats->floats_size() < 1) {
fail_shape_inference("Attribute 'value_floats' expect a list of floats.");
}
updateOutputElemType(ctx, 0, TensorProto::FLOAT);
appendDim(getOutputShape(ctx, 0), value_floats->floats_size());
return;
}

if (nullptr != value_string) {
// OpSchema::Verify check ensures that the attribute value has_i():
if (!value_string->has_s()) {
fail_shape_inference("Attribute 'value_string' expect a string.");
}
updateOutputElemType(ctx, 0, TensorProto::STRING);
updateOutputShape(ctx, 0, TensorShapeProto());
return;
}

if (nullptr != value_strings) {
// OpSchema::Verify check ensures that the attribute value has ints.
if (value_strings->strings_size() < 1) {
fail_shape_inference("Attribute 'value_strings' expect a list of strings.");
}
updateOutputElemType(ctx, 0, TensorProto::STRING);
appendDim(getOutputShape(ctx, 0), value_strings->strings_size());
return;
}

if (nullptr != sparse_value) {
// OpSchema::Verify check ensures that the attribute value
// has_sparse_tensor():
const SparseTensorProto& sparse = sparse_value->sparse_tensor();
// checker.cc::check_sparse_tensor checks that the sparse-value is
// well-formed
updateOutputElemType(ctx, 0, sparse.values().data_type());
auto* output_shape = getOutputShape(ctx, 0);
for (int i = 0; i < sparse.dims_size(); ++i)
appendDim(output_shape, sparse.dims(i));
return;
}

fail_shape_inference(
"TypeAndShapeInferenceFunction implementation incomplete: "
"this line should never be reached.");
}

ONNX_OPERATOR_SET_SCHEMA(
Constant,
13,
Expand Down Expand Up @@ -55,115 +165,7 @@ ONNX_OPERATOR_SET_SCHEMA(
false)
.Output(0, "output", "Output tensor containing the same value of the provided tensor.", "T")
.TypeConstraint("T", OpSchema::all_tensor_types_ir4(), "Constrain input and output types to all tensor types.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
auto* value = ctx.getAttribute("value");
auto* sparse_value = ctx.getAttribute("sparse_value");
auto* value_int = ctx.getAttribute("value_int");
auto* value_ints = ctx.getAttribute("value_ints");
auto* value_float = ctx.getAttribute("value_float");
auto* value_floats = ctx.getAttribute("value_floats");
auto* value_string = ctx.getAttribute("value_string");
auto* value_strings = ctx.getAttribute("value_strings");

std::vector<bool> non_null_attr = {
(nullptr != value),
(nullptr != sparse_value),
(nullptr != value_int),
(nullptr != value_ints),
(nullptr != value_float),
(nullptr != value_floats),
(nullptr != value_string),
(nullptr != value_strings)};
if (std::count(non_null_attr.begin(), non_null_attr.end(), true) != 1) {
fail_shape_inference(
"One and only one of the attributes 'value', 'value_*' or 'sparse_value' must be specified for a Constant node.");
}

if (nullptr != value) {
// OpSchema::Verify check ensures that the attribute value has_t():
const TensorProto& tensor_proto = value->t();
updateOutputElemType(ctx, 0, tensor_proto.data_type());
updateOutputShape(ctx, 0, tensor_proto);
return;
}

if (nullptr != value_int) {
// OpSchema::Verify check ensures that the attribute value has_i():
if (!value_int->has_i()) {
fail_shape_inference("Attribute 'value_int' expect an integer.")
}
updateOutputElemType(ctx, 0, TensorProto::INT64);
updateOutputShape(ctx, 0, TensorShapeProto());
return;
}

if (nullptr != value_ints) {
// OpSchema::Verify check ensures that the attribute value has ints.
if (value_ints->ints_size() < 1) {
fail_shape_inference("Attribute 'value_ints' expect a list of integers.");
}
updateOutputElemType(ctx, 0, TensorProto::INT64);
appendDim(getOutputShape(ctx, 0), value_ints->ints_size());
return;
}

if (nullptr != value_float) {
// OpSchema::Verify check ensures that the attribute value has_i():
if (!value_float->has_f()) {
fail_shape_inference("Attribute 'value_float' expect a float.");
}
updateOutputElemType(ctx, 0, TensorProto::FLOAT);
updateOutputShape(ctx, 0, TensorShapeProto());
return;
}

if (nullptr != value_floats) {
// OpSchema::Verify check ensures that the attribute value has ints.
if (value_floats->floats_size() < 1) {
fail_shape_inference("Attribute 'value_floats' expect a list of floats.");
}
updateOutputElemType(ctx, 0, TensorProto::FLOAT);
appendDim(getOutputShape(ctx, 0), value_floats->floats_size());
return;
}

if (nullptr != value_string) {
// OpSchema::Verify check ensures that the attribute value has_i():
if (!value_string->has_s()) {
fail_shape_inference("Attribute 'value_string' expect a string.");
}
updateOutputElemType(ctx, 0, TensorProto::STRING);
updateOutputShape(ctx, 0, TensorShapeProto());
return;
}

if (nullptr != value_strings) {
// OpSchema::Verify check ensures that the attribute value has ints.
if (value_strings->strings_size() < 1) {
fail_shape_inference("Attribute 'value_strings' expect a list of strings.");
}
updateOutputElemType(ctx, 0, TensorProto::STRING);
appendDim(getOutputShape(ctx, 0), value_strings->strings_size());
return;
}

if (nullptr != sparse_value) {
// OpSchema::Verify check ensures that the attribute value
// has_sparse_tensor():
const SparseTensorProto& sparse = sparse_value->sparse_tensor();
// checker.cc::check_sparse_tensor checks that the sparse-value is
// well-formed
updateOutputElemType(ctx, 0, sparse.values().data_type());
auto* output_shape = getOutputShape(ctx, 0);
for (int i = 0; i < sparse.dims_size(); ++i)
appendDim(output_shape, sparse.dims(i));
return;
}

fail_shape_inference(
"TypeAndShapeInferenceFunction implementation incomplete: "
"this line should never be reached.");
}));
.TypeAndShapeInferenceFunction(ConstantInference));

static const char* Constant_ver12_doc = R"DOC(
This operator produces a constant tensor. Exactly one of the provided attributes, either value, sparse_value,
Expand Down
Loading