Skip to content

Using non glove embeddings giving error: RuntimeError: The expanded size of the tensor (2048) must match the existing size (2148) at non-singleton dimension 1 #1177

@xijianlim

Description

@xijianlim

Im using a SequenceTagger model but everytime I use word embeddings other than 'glove' im getting the following error:

RuntimeError: The expanded size of the tensor (2048) must match the existing size (2148) at non-singleton dimension 1. Target sizes: [9, 2048]. Tensor sizes: [9, 2148]

Ive tried this using stacked and non-stacked embeddings:


from flair.models import SequenceTagger

tagger: SequenceTagger = SequenceTagger(hidden_size=500,
                                        embeddings=XLNetEmbeddings(),
                                        tag_dictionary=tag,
                                        tag_type='ner',
                                        use_crf=True)

# 6. initialize trainer
from flair.trainers import ModelTrainer

trainer: ModelTrainer = ModelTrainer(tagger, corpus_train)

# 7. start training
trainer.train(model_path,
              learning_rate=0.1,
              mini_batch_size=128,
              max_epochs=1)

Ive also tried the suggested stacked embeddings as per the documents and have the same kind of error:

embedding_types: List[TokenEmbeddings] = [

    WordEmbeddings('glove'),

    # comment in this line to use character embeddings
    CharacterEmbeddings(),

    # comment in these lines to use flair embeddings
    FlairEmbeddings('news-forward'),
    FlairEmbeddings('news-backward'),
]

embeddings: StackedEmbeddings = StackedEmbeddings(embeddings=embedding_types)

# 5. initialize sequence tagger
from flair.models import SequenceTagger

tagger: SequenceTagger = SequenceTagger(hidden_size=256,
                                        embeddings=embeddings,
                                        tag_dictionary=tag,
                                        tag_type='ner',
                                        use_crf=True)

# 6. initialize trainer
from flair.trainers import ModelTrainer

trainer: ModelTrainer = ModelTrainer(tagger, corpus_train)

# 7. start training
trainer.train(model_path,
              learning_rate=0.1,
              mini_batch_size=32,
              max_epochs=1)

Is there

Metadata

Metadata

Assignees

No one assigned

    Labels

    questionFurther information is requested

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions