🆕 [2025-08-14] 🔥 DINOv3 backbones are now available in Hugging Face Hub and supported by the Hugging Face Transformers library
Oriane Siméoni, Huy V. Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab,
Cijo Jose, Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa,
Francisco Massa, Daniel Haziza, Luca Wehrstedt, Jianyuan Wang,
Timothée Darcet, Théo Moutakanni, Leonel Sentana, Claire Roberts,
Andrea Vedaldi, Jamie Tolan, John Brandt, Camille Couprie,
Julien Mairal, Hervé Jégou, Patrick Labatut, Piotr Bojanowski
[ 📜 Paper
] [ 📰 Blog
] [ 🌐 Website
] [ 📖 BibTeX
]
Reference PyTorch implementation and models for DINOv3. For details, see the DINOv3 paper.
High-resolution dense features.
We visualize the cosine similarity maps obtained with DINOv3 output features
between the patches marked with a red cross and all other patches.
An extended family of versatile vision foundation models producing high-quality dense features and achieving outstanding performance on various vision tasks including outperforming the specialized state of the art across a broad range of settings, without fine-tuning
ℹ️ Please follow the link provided below to get access to all the model weights: once accepted, an e-mail will be sent with the complete list of URLs pointing to all the available model weights (both backbones and adapters). These URLs can then be used to either:
- download the model or adapter weights to a local filesystem and point
torch.hub.load()
to these local weights via theweights
orbackbone_weights
parameters, or - directly invoke
torch.hub.load()
to download and load a backbone or an adapter from its URL via also theweights
orbackbone_weights
parameters.
See the example code snippets below.
wget
instead of a web browser to download the weights.
ViT models pretrained on web dataset (LVD-1689M):
Model | Parameters | Pretraining Dataset |
Download |
---|---|---|---|
ViT-S/16 distilled | 21M | LVD-1689M | [link] |
ViT-S+/16 distilled | 29M | LVD-1689M | [link] |
ViT-B/16 distilled | 86M | LVD-1689M | [link] |
ViT-L/16 distilled | 300M | LVD-1689M | [link] |
ViT-H+/16 distilled | 840M | LVD-1689M | [link] |
ViT-7B/16 | 6,716M | LVD-1689M | [link] |
ConvNeXt models pretrained on web dataset (LVD-1689M):
Model | Parameters | Pretraining Dataset |
Download |
---|---|---|---|
ConvNeXt Tiny | 29M | LVD-1689M | [link] |
ConvNeXt Small | 50M | LVD-1689M | [link] |
ConvNeXt Base | 89M | LVD-1689M | [link] |
ConvNeXt Large | 198M | LVD-1689M | [link] |
ViT models pretrained on satellite dataset (SAT-493M):
Model | Parameters | Pretraining Dataset |
Download |
---|---|---|---|
ViT-L/16 distilled | 300M | SAT-493M | [link] |
ViT-7B/16 | 6,716M | SAT-493M | [link] |
Pretrained backbones (via PyTorch Hub)
Please follow the instructions here to install PyTorch (the only required dependency for loading the model). Installing PyTorch with CUDA support is strongly recommended.
import torch
REPO_DIR = <PATH/TO/A/LOCAL/DIRECTORY/WHERE/THE/DINOV3/REPO/WAS/CLONED>
# DINOv3 ViT models pretrained on web images
dinov3_vits16 = torch.hub.load(REPO_DIR, 'dinov3_vits16', source='local', weights=<CHECKPOINT/URL/OR/PATH>)
dinov3_vits16plus = torch.hub.load(REPO_DIR, 'dinov3_vits16plus', source='local', weights=<CHECKPOINT/URL/OR/PATH>)
dinov3_vitb16 = torch.hub.load(REPO_DIR, 'dinov3_vitb16', source='local', weights=<CHECKPOINT/URL/OR/PATH>)
dinov3_vitl16 = torch.hub.load(REPO_DIR, 'dinov3_vitl16', source='local', weights=<CHECKPOINT/URL/OR/PATH>)
dinov3_vith16plus = torch.hub.load(REPO_DIR, 'dinov3_vith16plus', source='local', weights=<CHECKPOINT/URL/OR/PATH>)
dinov3_vit7b16 = torch.hub.load(REPO_DIR, 'dinov3_vit7b16', source='local', weights=<CHECKPOINT/URL/OR/PATH>)
# DINOv3 ConvNeXt models pretrained on web images
dinov3_convnext_tiny = torch.hub.load(REPO_DIR, 'dinov3_convnext_tiny', source='local', weights=<CHECKPOINT/URL/OR/PATH>)
dinov3_convnext_small = torch.hub.load(REPO_DIR, 'dinov3_convnext_small', source='local', weights=<CHECKPOINT/URL/OR/PATH>)
dinov3_convnext_base = torch.hub.load(REPO_DIR, 'dinov3_convnext_base', source='local', weights=<CHECKPOINT/URL/OR/PATH>)
dinov3_convnext_large = torch.hub.load(REPO_DIR, 'dinov3_convnext_large', source='local', weights=<CHECKPOINT/URL/OR/PATH>)
# DINOv3 ViT models pretrained on satellite imagery
dinov3_vitl16 = torch.hub.load(REPO_DIR, 'dinov3_vitl16', source='local', weights=<CHECKPOINT/URL/OR/PATH>)
dinov3_vit7b16 = torch.hub.load(REPO_DIR, 'dinov3_vit7b16', source='local', weights=<CHECKPOINT/URL/OR/PATH>)
Pretrained backbones (via Hugging Face Transformers)
All the backbones are available in the the DINOv3 collection on Hugging Face Hub and supported via the Hugging Face Transformers library. Please refer to the corresponding documentation for usage, but below is a short example that demonstrates how to obtain an image embedding with either [Pipeline] or the [AutoModel] class.
from transformers import pipeline
from transformers.image_utils import load_image
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = load_image(url)
feature_extractor = pipeline(
model="facebook/dinov3-convnext-tiny-pretrain-lvd1689m",
task="image-feature-extraction",
)
features = feature_extractor(image)
import torch
from transformers import AutoImageProcessor, AutoModel
from transformers.image_utils import load_image
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = load_image(url)
pretrained_model_name = "facebook/dinov3-convnext-tiny-pretrain-lvd1689m"
processor = AutoImageProcessor.from_pretrained(pretrained_model_name)
model = AutoModel.from_pretrained(
pretrained_model_name,
device_map="auto",
)
inputs = processor(images=image, return_tensors="pt").to(model.device)
with torch.inference_mode():
outputs = model(**inputs)
pooled_output = outputs.pooler_output
print("Pooled output shape:", pooled_output.shape)
where model
and pretrained_model_name
above can be one of:
facebook/dinov3-vits16-pretrain-lvd1689m
facebook/dinov3-vits16plus-pretrain-lvd1689m
facebook/dinov3-vitb16-pretrain-lvd1689m
facebook/dinov3-vitl16-pretrain-lvd1689m
facebook/dinov3-vith16plus-pretrain-lvd1689m
facebook/dinov3-vit7b16-pretrain-lvd1689m
facebook/dinov3-convnext-base-pretrain-lvd1689m
facebook/dinov3-convnext-large-pretrain-lvd1689m
facebook/dinov3-convnext-small-pretrain-lvd1689m
facebook/dinov3-convnext-tiny-pretrain-lvd1689m
facebook/dinov3-vitl16-pretrain-sat493m
facebook/dinov3-vit7b16-pretrain-sat493m
For models using the LVD-1689M weights (pretrained on web images), please use the following transform (standard ImageNet evaluation transform):
import torchvision
def make_transform(resize_size: int = 224):
to_tensor = transforms.ToTensor()
resize = transforms.Resize((resize_size, resize_size), antialias=True)
normalize = transforms.Normalize(
mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225),
)
return transforms.Compose([to_tensor, resize, normalize])
For models using the SAT-493M weights (pretrained on satellite imagery), please use the following transform:
import torchvision
def make_transform(resize_size: int = 224):
to_tensor = transforms.ToTensor()
resize = transforms.Resize((resize_size, resize_size), antialias=True)
normalize = transforms.Normalize(
mean=(0.430, 0.411, 0.296),
std=(0.213, 0.156, 0.143),
)
return transforms.Compose([to_tensor, resize, normalize])
Backbone | Pretraining Dataset |
Head Dataset |
Download |
---|---|---|---|
ViT-7B/16 | LVD-1689M | ImageNet | [link] |
The (full) classifier models can be loaded via PyTorch Hub:
import torch
# DINOv3
dinov3_vit7b16_lc = torch.hub.load(REPO_DIR, 'dinov3_vit7b16_lc', source="local", weights=<DEPTHER/CHECKPOINT/URL/OR/PATH>, backbone_weights=<BACKBONE/CHECKPOINT/URL/OR/PATH>)
Backbone | Pretraining Dataset |
Head Dataset |
Download |
---|---|---|---|
ViT-7B/16 | LVD-1689M | SYNTHMIX | [link] |
depther = torch.hub.load(REPO_DIR, 'dinov3_vit7b16_dd', source="local", weights=<DEPTHER/CHECKPOINT/URL/OR/PATH>, backbone_weights=<BACKBONE/CHECKPOINT/URL/OR/PATH>)
Full example code of depther on an image
from PIL import Image
import torch
from torchvision import transforms
import matplotlib.pyplot as plt
from matplotlib import colormaps
def get_img():
import requests
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
return image
def make_transform(resize_size: int | list[int] = 768):
to_tensor = transforms.ToTensor()
resize = transforms.Resize((resize_size, resize_size), antialias=True)
normalize = transforms.Normalize(
mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225),
)
return transforms.Compose([to_tensor, resize, normalize])
depther = torch.hub.load(REPO_DIR, 'dinov3_vit7b16_dd', source="local", weights=<DEPTHER/CHECKPOINT/URL/OR/PATH>, backbone_weights=<BACKBONE/CHECKPOINT/URL/OR/PATH>)
img_size = 1024
img = get_img()
transform = make_transform(img_size)
with torch.inference_mode():
with torch.autocast('cuda', dtype=torch.bfloat16):
batch_img = transform(img)[None]
batch_img = batch_img
depths = depther(batch_img)
plt.figure(figsize=(12, 6))
plt.subplot(121)
plt.imshow(img)
plt.axis("off")
plt.subplot(122)
plt.imshow(depths[0,0].cpu(), cmap=colormaps["Spectral"])
plt.axis("off")
Backbone | Pretraining Dataset |
Head Dataset |
Download |
---|---|---|---|
ViT-7B/16 | LVD-1689M | COCO2017 | [link] |
detector = torch.hub.load(REPO_DIR, 'dinov3_vit7b16_de', source="local", weights=<DETECTOR/CHECKPOINT/URL/OR/PATH>, backbone_weights=<BACKBONE/CHECKPOINT/URL/OR/PATH>)
Backbone | Pretraining Dataset |
Head Dataset |
Download |
---|---|---|---|
ViT-7B/16 | LVD-1689M | ADE20K | [link] |
segmentor = torch.hub.load(REPO_DIR, 'dinov3_vit7b16_ms', source="local", weights=<SEGMENTOR/CHECKPOINT/URL/OR/PATH>, backbone_weights=<BACKBONE/CHECKPOINT/URL/OR/PATH>)
Full example code of segmentator on an image
import sys
sys.path.append(REPO_DIR)
from PIL import Image
import torch
from torchvision import transforms
import matplotlib.pyplot as plt
from matplotlib import colormaps
from functools import partial
from dinov3.eval.segmentation.inference import make_inference
def get_img():
import requests
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
return image
def make_transform(resize_size: int | list[int] = 768):
to_tensor = transforms.ToTensor()
resize = transforms.Resize((resize_size, resize_size), antialias=True)
normalize = transforms.Normalize(
mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225),
)
return transforms.Compose([to_tensor, resize, normalize])
segmentor = torch.hub.load(REPO_DIR, 'dinov3_vit7b16_ms', source="local", weights=<SEGMENTOR/CHECKPOINT/URL/OR/PATH>, backbone_weights=<BACKBONE/CHECKPOINT/URL/OR/PATH>)
img_size = 896
img = get_img()
transform = make_transform(img_size)
with torch.inference_mode():
with torch.autocast('cuda', dtype=torch.bfloat16):
batch_img = transform(img)[None]
pred_vit7b = segmentor(batch_img) # raw predictions
# actual segmentation map
segmentation_map_vit7b = make_inference(
batch_img,
segmentor,
inference_mode="slide",
decoder_head_type="m2f",
rescale_to=(img.size[-1], img.size[-2]),
n_output_channels=150,
crop_size=(img_size, img_size),
stride=(img_size, img_size),
output_activation=partial(torch.nn.functional.softmax, dim=1),
).argmax(dim=1, keepdim=True)
plt.figure(figsize=(12, 6))
plt.subplot(121)
plt.imshow(img)
plt.axis("off")
plt.subplot(122)
plt.imshow(segmentation_map_vit7b[0,0].cpu(), cmap=colormaps["Spectral"])
plt.axis("off")
Backbone | Download |
---|---|
ViT-L/16 distilled | [link], vocabulary, vocabulary license |
The (full) dino.txt model can be loaded via PyTorch Hub:
import torch
# DINOv3
dinov3_vitl16_dinotxt_tet1280d20h24l, tokenizer = torch.hub.load(REPO_DIR, 'dinov3_vitl16_dinotxt_tet1280d20h24l', weights=<SEGMENTOR/CHECKPOINT/URL/OR/PATH>, backbone_weights=<BACKBONE/CHECKPOINT/URL/OR/PATH>)
The training and evaluation code requires PyTorch version >= 2.7.1 as well as a few other 3rd party packages. Note that the code has only been tested with the specified versions and also expects a Linux environment. To setup all the required dependencies for training and evaluation, please follow the instructions below:
micromamba (Recommended) - Clone the repository and then create and activate a dinov3
conda environment using the provided environment definition:
micromamba env create -f conda.yaml
micromamba activate dinov3
Several notebooks are provided to get started applying DINOv3:
- PCA of patch features: display the PCA of DINOv3 patch features on a foreground object (rainbow visualizations from the paper) [Run in Google Colab]
- Foreground segmentation: train a linear foreground segmentation model based on DINOv3 features [Run in Google Colab]
- Dense and sparse matching: match patches from objects on two different images based on DINOv3 features [Run in Google Colab]
- Segmentation tracking: video segmentation tracking using a non-parametric method based on DINOv3 features [Run in Google Colab]
The root directory of the dataset should hold the following contents:
<ROOT>/test/ILSVRC2012_test_00000001.JPEG
<ROOT>/test/[..]
<ROOT>/test/ILSVRC2012_test_00100000.JPEG
<ROOT>/train/n01440764/n01440764_10026.JPEG
<ROOT>/train/[...]
<ROOT>/train/n15075141/n15075141_9993.JPEG
<ROOT>/val/n01440764/ILSVRC2012_val_00000293.JPEG
<ROOT>/val/[...]
<ROOT>/val/n15075141/ILSVRC2012_val_00049174.JPEG
<ROOT>/labels.txt
The provided dataset implementation expects a few additional metadata files to be present under the extra directory:
<EXTRA>/class-ids-TRAIN.npy
<EXTRA>/class-ids-VAL.npy
<EXTRA>/class-names-TRAIN.npy
<EXTRA>/class-names-VAL.npy
<EXTRA>/entries-TEST.npy
<EXTRA>/entries-TRAIN.npy
<EXTRA>/entries-VAL.npy
These metadata files can be generated (once) with the following lines of Python code:
from dinov3.data.datasets import ImageNet
for split in ImageNet.Split:
dataset = ImageNet(split=split, root="<ROOT>", extra="<EXTRA>")
dataset.dump_extra()
Note that the root and extra directories do not have to be distinct directories.
Please adapt the dataset class to match your local setup.
dinov3
package should be included in the Python module search path, i.e. simply prefix the command to run with PYTHONPATH=.
.
Run DINOv3 pre-training on 4 H100-80GB nodes (32 GPUs) in a SLURM cluster environment with submitit:
PYTHONPATH=${PWD} python -m dinov3.run.submit dinov3/train/train.py \
--nodes 4 \
--config-file dinov3/configs/train/vitl_im1k_lin834.yaml \
--output-dir <PATH/TO/OUTPUT/DIR> \
train.dataset_path=ImageNet22k:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET>
Training time is approximately 14 hours and the resulting checkpoint should reach 82.0% on k-NN eval and 83.5% on linear eval.
The training code saves the weights of the teacher in the eval folder every 12500 iterations for evaluation.
DINOv3 ViT-7B/16 is trained on a private dataset. The training involves 3 stages:
- Pretraining
- Gram anchoring
- High resolution adaptation
Launch DINOV3 ViT-7B/16 pretraining on 32 nodes (256 GPUs) in a SLURM cluster environment with submitit.
PYTHONPATH=${PWD} python -m dinov3.run.submit dinov3/train/train.py \
--nodes 32 \
--config-file dinov3/configs/train/dinov3_vit7b16_pretrain.yaml \
--output-dir <PATH/TO/OUTPUT/DIR> \
train.dataset_path=<DATASET>:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET>
PYTHONPATH=${PWD} python -m dinov3.run.submit dinov3/train/train.py \
--nodes 32 \
--config-file dinov3/configs/train/dinov3_vit7b16_gram_anchor.yaml \
--output-dir <PATH/TO/OUTPUT/DIR> \
train.dataset_path=<DATASET>:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET> \
gram.ckpt=<PATH/TO/GRAM_TEACHER_FROM_PREVIOUS_STEP>
PYTHONPATH=${PWD} python -m dinov3.run.submit dinov3/train/train.py \
--nodes 32 \
--config-file dinov3/configs/train/dinov3_vit7b16_high_res_adapt.yaml \
--output-dir <PATH/TO/OUTPUT/DIR> \
train.dataset_path=<DATASET>:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET> \
gram.ckpt=<PATH/TO/TEACHER_FROM_GRAM> \
student.resume_from_teacher_chkpt=<PATH/TO/TEACHER_FROM_GRAM>
PYTHONPATH=${PWD} python -m dinov3.run.submit dinov3/train/train.py \
--nodes 1 \
--config-file dinov3/configs/train/multi_distillation_test.yaml \
--output-dir <PATH/TO/OUTPUT/DIR> \
--multi-distillation \
train.dataset_path=<DATASET>:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET>
The training code regularly saves the teacher weights. In order to evaluate the model, run the following evaluation on a single node:
PYTHONPATH=${PWD} python -m dinov3.run.submit dinov3/eval/log_regression.py \
model.config_file=<PATH/TO/OUTPUT/DIR>/config.yaml \
model.pretrained_weights=<PATH/TO/OUTPUT/DIR>/teacher_checkpoint.pth \
output_dir=<PATH/TO/OUTPUT/DIR> \
train.dataset=ImageNet:split=TRAIN:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET> \
eval.test_dataset=ImageNet:split=VAL:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET>
PYTHONPATH=${PWD} python -m dinov3.run.submit dinov3/eval/knn.py \
model.config_file=<PATH/TO/OUTPUT/DIR>/config.yaml \
model.pretrained_weights=<PATH/TO/OUTPUT/DIR>/teacher_checkpoint.pth \
output_dir=<PATH/TO/OUTPUT/DIR> \
train.dataset=ImageNet:split=TRAIN:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET> \
eval.test_dataset=ImageNet:split=VAL:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET>
PYTHONPATH=${PWD} python -m dinov3.run.submit dinov3/eval/linear.py \
model.config_file=<PATH/TO/OUTPUT/DIR>/config.yaml \
model.pretrained_weights=<PATH/TO/OUTPUT/DIR>/teacher_checkpoint.pth \
output_dir=<PATH/TO/OUTPUT/DIR> \
train.dataset=ImageNet:split=TRAIN:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET> \
train.val_dataset=ImageNet:split=VAL:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET>
Text alignment can be done following the method from dino.txt
aka DINOv2 Meets Text.
PYTHONPATH=${PWD} python -m dinov3.run.submit dinov3/eval/text/train_dinotxt.py \
--nodes 4 \
# An example config for text alignment is here: dinov3/eval/text/configs/dinov3_vitl_text.yaml \
trainer_config_file="<PATH/TO/DINOv3/TEXT/CONFIG>" \
output-dir=<PATH/TO/OUTPUT/DIR>
Launching the above trains text alignment on 4 nodes with 8 gpus each (32 gpus in total).
Please note that the text alignment model in the DINOv3 paper was trained on a private dataset and here we have given an example config in dinov3/eval/text/configs/dinov3_vitl_text.yaml
using CocoCaptions
dataset for illustration purposes.
Please adapt the provided CocoCaptions
dataset class, the dataset can be found here
DINOv3 code and model weights are released under the DINOv3 License. See LICENSE.md for additional details.
See contributing and the code of conduct.
If you find this repository useful, please consider giving a star ⭐ and citation 🦖:
@misc{simeoni2025dinov3,
title={{DINOv3}},
author={Sim{\'e}oni, Oriane and Vo, Huy V. and Seitzer, Maximilian and Baldassarre, Federico and Oquab, Maxime and Jose, Cijo and Khalidov, Vasil and Szafraniec, Marc and Yi, Seungeun and Ramamonjisoa, Micha{\"e}l and Massa, Francisco and Haziza, Daniel and Wehrstedt, Luca and Wang, Jianyuan and Darcet, Timoth{\'e}e and Moutakanni, Th{\'e}o and Sentana, Leonel and Roberts, Claire and Vedaldi, Andrea and Tolan, Jamie and Brandt, John and Couprie, Camille and Mairal, Julien and J{\'e}gou, Herv{\'e} and Labatut, Patrick and Bojanowski, Piotr},
year={2025},
eprint={2508.10104},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2508.10104},
}