-
Notifications
You must be signed in to change notification settings - Fork 346
Closed
Labels
wishlistLong-term wishlist feature requestsLong-term wishlist feature requests
Description
Hello everyone.
Is there any way to use plot_slice like thisrender(plot_slice(ax_client.generation_strategy.model, "x", "dsp"))
despite using choiceParameter?
gs = GenerationStrategy(
steps=[
# 2. Bayesian optimization step (requires data obtained from previous phase and learns
# from all data available at the time of each new candidate generation call)
GenerationStep(
model=Models.GPEI,
num_trials=-1, # No limitation on how many trials should be produced from this step
max_parallelism=1, # Parallelism limit for this step, often lower than for Sobol
# More on parallelism vs. required samples in BayesOpt:
# https://ax.dev/docs/bayesopt.html#tradeoff-between-parallelism-and-total-number-of-trials
),
]
)
ax_client = AxClient(generation_strategy=gs)
ax_client.create_experiment(
name="test",
parameters=[
{
"name": "x",
"type": "choice",
"value_type": "float",
"values": list(np.arange(8.0, 15.0, 0.25)), # Convertissez les éléments en type float natif.
"is_ordered": True, # Indique que les valeurs sont ordonnées.
},
],
choose_generation_strategy_kwargs={"max_parallelism_override": 1},
objective_name="dsp",
minimize=True, # Optional, defaults to False.
outcome_constraints=["alpha >= 0",
"beta >= 0",
"gamma >= 0",
"delta >= 0",
"epsilon >= 0",
"iota >= 0",
"kappa >= 0",
], # Optional.
)
Metadata
Metadata
Assignees
Labels
wishlistLong-term wishlist feature requestsLong-term wishlist feature requests