Skip to content

xgboost.dask.DaskXGBClassifier implementation of .predict() does not adhere to the sklearn API specification #5985

@jameskrach

Description

@jameskrach

Sklearn Specification for Classifiers

The .predict() method of xgboost.dask.DaskXGBClassifier currently returns probabilities. Per the specification, the .predict() method is supposed to return class labels. This is also inconsistent with the behavior of the .predict() method of xgboost.XGBClassifier, which properly returns class labels.

Other functionality in dask (specifically in dask_ml.model_selection) depend on the behavior being correct.

Example of correct behavior in xgboost.XGBClassifier:

import xgboost as xgb
from sklearn.datasets import make_classification

X, y = make_classification(n_samples=1000, n_informative=5, n_classes=2, random_state=1234)
clf = xgb.XGBClassifier(objective="binary:logistic")
clf.fit(X, y)
print(clf.predict(X)[:5])
# [0 0 1 1 1]

Example of incorrect behavior in xgboost.dask.DaskXGBClassifier:

import xgboost as xgb
import dask.dataframe as dd
import dask.distributed
from sklearn.datasets import make_classification


cluster = dask.distributed.LocalCluster(n_workers=2, threads_per_worker=1)
client = dask.distributed.Client(cluster)
X, y = make_classification(n_samples=1000, n_informative=5, n_classes=2, random_state=1234)
X_ = dd.from_array(X, chunksize=500)
y_ = dd.from_array(y, chunksize=500)
clf = xgb.dask.DaskXGBClassifier(objective="binary:logistic")
clf.fit(X_, y_)
print(clf.predict(X_).compute()[:5])
# [0.03111755 0.00773133 0.99876463 0.99792993 0.9944484 ]

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions