-
-
Notifications
You must be signed in to change notification settings - Fork 8.8k
Closed
Description
After train a model for a long time I saved it using
bst.save_model("xgboostModel.trail04.json")
I latter tried to load it with the same params to continue training
filemodel = 'xgboostModel.trail04.json'
bst = xgb.train(param, xgTrain, num_boost_round=numOfRounds, evals=watchList, early_stopping_rounds=2000, xgb_model=filemodel)
but I get this error:
File "/home/user/programs/pycharm/plugins/python-ce/helpers/pydev/pydevd.py", line 1438, in _exec
pydev_imports.execfile(file, globals, locals) # execute the script
File "/home/user/programs/pycharm/plugins/python-ce/helpers/pydev/_pydev_imps/_pydev_execfile.py", line 18, in execfile
exec(compile(contents+"\n", file, 'exec'), glob, loc)
File "/home/user/projects/temp/pythontmp/lastPointClassifiers.py", line 270, in <module>
trial04()
File "/home/user/projects/temp/pythontmp/lastPointClassifiers.py", line 256, in trial04
xgb_model=filemodel)
File "/home/user/.local/lib/python3.7/site-packages/xgboost/training.py", line 212, in train
xgb_model=xgb_model, callbacks=callbacks)
File "/home/user/.local/lib/python3.7/site-packages/xgboost/training.py", line 37, in _train_internal
model_file=xgb_model)
File "/home/user/.local/lib/python3.7/site-packages/xgboost/core.py", line 1175, in __init__
self.load_model(model_file)
File "/home/user/.local/lib/python3.7/site-packages/xgboost/core.py", line 1804, in load_model
self.handle, c_str(os_fspath(fname))))
File "/home/user/.local/lib/python3.7/site-packages/xgboost/core.py", line 190, in _check_call
raise XGBoostError(py_str(_LIB.XGBGetLastError()))
xgboost.core.XGBoostError: [19:57:42] /workspace/src/common/json.cc:413: Expecting: ",", got: "
When I try the same exact thing but run it over a smaller number of rounds it loads fine and trains like a champ.
def Example():
X, Y = getData(randomize=True)
X = np.array(X)
Y = np.array(Y)
l = int(len(X) * .5)
xgTrain = xgb.DMatrix(X[:l], label=Y[:l])
xgTest = xgb.DMatrix(X[l:], label=Y[l:])
param = {
'objective': 'multi:softmax',
'eta': 0.0001,
'max_depth': 6,
'nthread': 16,
'num_class': 2,
'tree_method': 'gpu_hist',
}
watchList = [(xgTrain, 'train'), (xgTest, 'test')]
numOfRounds = 1000000
filemodel = 'xgboostModel.trail04.json'
print("fit()")
if path.exists(filemodel):
bst = xgb.train(param, xgTrain, num_boost_round=numOfRounds, evals=watchList, early_stopping_rounds=2000,
xgb_model=filemodel)
else:
bst = xgb.train(param, xgTrain, num_boost_round=numOfRounds, evals=watchList, early_stopping_rounds=2000)
bst.save_model(filemodel)
Metadata
Metadata
Assignees
Labels
No labels