-
-
Notifications
You must be signed in to change notification settings - Fork 8.8k
Closed
Description
Seems like in the internal R documentation, a few objectives are not documented, e.g. the squaredlogerror
and others. I can make a PR to complete the documentation if you want.
Code seems to work with squaredlogerror
:
library(xgboost)
xgboost(
data = as.matrix(mtcars), label = runif(nrow(mtcars)),
max_depth = 2, eta = 1, nthread = 2, nrounds = 2,
objective = "reg:squaredlogerror"
)
#> [1] train-rmsle:0.161837
#> [2] train-rmsle:0.112548
#> ##### xgb.Booster
#> raw: 1.2 Kb
#> call:
#> xgb.train(params = params, data = dtrain, nrounds = nrounds,
#> watchlist = watchlist, verbose = verbose, print_every_n = print_every_n,
#> early_stopping_rounds = early_stopping_rounds, maximize = maximize,
#> save_period = save_period, save_name = save_name, xgb_model = xgb_model,
#> callbacks = callbacks, max_depth = 2, eta = 1, nthread = 2,
#> objective = "reg:squaredlogerror")
#> params (as set within xgb.train):
#> max_depth = "2", eta = "1", nthread = "2", objective = "reg:squaredlogerror", silent = "1"
#> xgb.attributes:
#> niter
#> callbacks:
#> cb.print.evaluation(period = print_every_n)
#> cb.evaluation.log()
#> # of features: 11
#> niter: 2
#> nfeatures : 11
#> evaluation_log:
#> iter train_rmsle
#> 1 0.161837
#> 2 0.112548
xgboost(
data = as.matrix(mtcars), label = runif(nrow(mtcars)),
max_depth = 2, eta = 1, nthread = 2, nrounds = 2,
objective = "reg:squarederror"
)
#> [1] train-rmse:0.217743
#> [2] train-rmse:0.192517
#> ##### xgb.Booster
#> raw: 1.2 Kb
#> call:
#> xgb.train(params = params, data = dtrain, nrounds = nrounds,
#> watchlist = watchlist, verbose = verbose, print_every_n = print_every_n,
#> early_stopping_rounds = early_stopping_rounds, maximize = maximize,
#> save_period = save_period, save_name = save_name, xgb_model = xgb_model,
#> callbacks = callbacks, max_depth = 2, eta = 1, nthread = 2,
#> objective = "reg:squarederror")
#> params (as set within xgb.train):
#> max_depth = "2", eta = "1", nthread = "2", objective = "reg:squarederror", silent = "1"
#> xgb.attributes:
#> niter
#> callbacks:
#> cb.print.evaluation(period = print_every_n)
#> cb.evaluation.log()
#> # of features: 11
#> niter: 2
#> nfeatures : 11
#> evaluation_log:
#> iter train_rmse
#> 1 0.217743
#> 2 0.192517
Created on 2020-05-12 by the reprex package (v0.3.0)
Metadata
Metadata
Assignees
Labels
No labels