-
-
Notifications
You must be signed in to change notification settings - Fork 8.8k
Closed
Description
import xgboost
from sklearn.datasets import make_regression
xgboost.__version__
# '1.0.2'
from sklearn.datasets import make_regression
X_train, y_train = make_regression()
xgboost.XGBRegressor(wrong_param=3).fit(X_train, y_train)
XGBRegressor(base_score=0.5, booster=None, colsample_bylevel=1,
# colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=-1,
# importance_type='gain', interaction_constraints=None,
# learning_rate=0.300000012, max_delta_step=0, max_depth=6,
# min_child_weight=1, missing=nan, monotone_constraints=None,
# n_estimators=100, n_jobs=0, num_parallel_tree=1,
# objective='reg:squarederror', random_state=0, reg_alpha=0,
# reg_lambda=1, scale_pos_weight=1, subsample=1, tree_method=None,
# validate_parameters=False, verbosity=None, wrong_param=3)
Metadata
Metadata
Assignees
Labels
No labels