-
-
Notifications
You must be signed in to change notification settings - Fork 8.8k
Closed
Labels
Description
https://xgboost.readthedocs.io/en/latest/R-package/discoverYourData.html
importanceRaw <- xgb.importance(feature_names = sparse_matrix@Dimnames[[2]], model = bst, data = sparse_matrix, label = output_vector)
Cleaning for better display
importanceClean <- importanceRaw[,:=
(Cover=NULL, Frequency=NULL)]
head(importanceClean)
Feature Split Gain RealCover RealCover %
1: TreatmentPlacebo -1.00136e-05 0.28575061 7 0.2500000
2: Age 61.5 0.16374034 12 0.4285714
3: Age 39 0.08705750 8 0.2857143
4: Age 57.5 0.06947553 11 0.3928571
5: SexMale -1.00136e-05 0.04874405 4 0.1428571
6: Age 53.5 0.04620627 10 0.3571429
our results is : Feature Gain
1: Age 0.60965369
2: TreatmentPlacebo 0.34017103
3: SexMale 0.02340126
4: AgeDiscret6 0.01514658
5: AgeDiscret4 0.01162745