Skip to content

To train on my own dataset #85

@xxxpsyduck

Description

@xxxpsyduck

Hi. I created lmdb dataset on my own data by running create_lmdb_dataset.py. then I run the train command on it and got the following output:

CUDA_VISIBLE_DEVICES=0 python3 train.py --train_data result/train --valid_data result/test --Transformation TPS --FeatureExtraction ResNet --SequenceModeling BiLSTM --Prediction Attn

dataset_root: result/train
opt.select_data: ['MJ', 'ST']
opt.batch_ratio: ['0.5', '0.5']

dataset_root: result/train dataset: MJ
Traceback (most recent call last):
File "train.py", line 283, in
train(opt)
File "train.py", line 26, in train
train_dataset = Batch_Balanced_Dataset(opt)
File "/home/mor-ai/Work/deep-text-recognition-benchmark/dataset.py", line 37, in init
_dataset = hierarchical_dataset(root=opt.train_data, opt=opt, select_data=[selected_d])
File "/home/mor-ai/Work/deep-text-recognition-benchmark/dataset.py", line 106, in hierarchical_dataset
concatenated_dataset = ConcatDataset(dataset_list)
File "/home/mor-ai/.local/lib/python3.6/site-packages/torch/utils/data/dataset.py", line 187, in init
assert len(datasets) > 0, 'datasets should not be an empty iterable'
AssertionError: datasets should not be an empty iterable

Can you help me resolve this?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions