-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Closed
Description
TL;DR
A new Fatal Python error: Segmentation fault
error appeared when upgrading catboost 1.2
-> 1.2.1
(full stacktrace available below).
Notes:
- This problem is not present when I downgrade catboost from
1.2.1
to1.2
- This problem only occurs when I use a custom
eval_metric
(see eval metric implementation bellow, in case relevant).
Form
Problem:
Fatal Python error: Segmentation fault
catboost version:
$ pip freeze | grep catboost
catboost==1.2.1
Operating System:
$ sw_vers
ProductName: macOS
ProductVersion: 13.4.1
...
CPU:
$ uname -a
Darwin XX 22.5.0 Darwin Kernel Version 22.5.0: Thu Jun 8 22:22:19 PDT 2023; root:xnu-8796.121.3~7/RELEASE_ARM64_T8103 arm64
GPU:
Not used.
Stacktrace
experimentation/tests/model_runner_test.py Fatal Python error: Segmentation fault
Thread 0x000000029d307000 (most recent call first):
File "/Users/XX/.pyenv/versions/3.10.10/lib/python3.10/threading.py", line 324 in wait
File "/Users/XX/.pyenv/versions/3.10.10/lib/python3.10/threading.py", line 607 in wait
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/tqdm/_monitor.py", line 60 in run
File "/Users/XX/.pyenv/versions/3.10.10/lib/python3.10/threading.py", line 1016 in _bootstrap_inner
File "/Users/XX/.pyenv/versions/3.10.10/lib/python3.10/threading.py", line 973 in _bootstrap
Thread 0x00000002854eb000 (most recent call first):
File "/Users/XX/.pyenv/versions/3.10.10/lib/python3.10/concurrent/futures/thread.py", line 81 in _worker
File "/Users/XX/.pyenv/versions/3.10.10/lib/python3.10/threading.py", line 953 in run
File "/Users/XX/.pyenv/versions/3.10.10/lib/python3.10/threading.py", line 1016 in _bootstrap_inner
File "/Users/XX/.pyenv/versions/3.10.10/lib/python3.10/threading.py", line 973 in _bootstrap
Thread 0x00000002844df000 (most recent call first):
File "/Users/XX/.pyenv/versions/3.10.10/lib/python3.10/selectors.py", line 562 in select
File "/Users/XX/.pyenv/versions/3.10.10/lib/python3.10/asyncio/base_events.py", line 1871 in _run_once
File "/Users/XX/.pyenv/versions/3.10.10/lib/python3.10/asyncio/base_events.py", line 603 in run_forever
File "/Users/XX/.pyenv/versions/3.10.10/lib/python3.10/threading.py", line 953 in run
File "/Users/XX/.pyenv/versions/3.10.10/lib/python3.10/threading.py", line 1016 in _bootstrap_inner
File "/Users/XX/.pyenv/versions/3.10.10/lib/python3.10/threading.py", line 973 in _bootstrap
Current thread 0x00000001f86f1e00 (most recent call first):
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/catboost/core.py", line 1723 in _train
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/catboost/core.py", line 2319 in _fit
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/catboost/core.py", line 5100 in fit
File "/Users/XX/dev/YY/experimentation/model_runner.py", line 157 in run_experiments
File "/Users/XX/dev/YY/experimentation/tests/model_runner_test.py", line 19 in test_run_experiments
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/_pytest/python.py", line 194 in pytest_pyfunc_call
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/pluggy/_callers.py", line 77 in _multicall
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/pluggy/_manager.py", line 115 in _hookexec
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/pluggy/_hooks.py", line 493 in __call__
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/_pytest/python.py", line 1788 in runtest
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/_pytest/runner.py", line 169 in pytest_runtest_call
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/pluggy/_callers.py", line 77 in _multicall
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/pluggy/_manager.py", line 115 in _hookexec
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/pluggy/_hooks.py", line 493 in __call__
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/_pytest/runner.py", line 262 in <lambda>
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/_pytest/runner.py", line 341 in from_call
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/_pytest/runner.py", line 261 in call_runtest_hook
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/_pytest/runner.py", line 222 in call_and_report
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/_pytest/runner.py", line 133 in runtestprotocol
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/_pytest/runner.py", line 114 in pytest_runtest_protocol
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/pluggy/_callers.py", line 77 in _multicall
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/pluggy/_manager.py", line 115 in _hookexec
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/pluggy/_hooks.py", line 493 in __call__
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/_pytest/main.py", line 349 in pytest_runtestloop
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/pluggy/_callers.py", line 77 in _multicall
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/pluggy/_manager.py", line 115 in _hookexec
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/pluggy/_hooks.py", line 493 in __call__
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/_pytest/main.py", line 324 in _main
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/_pytest/main.py", line 270 in wrap_session
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/_pytest/main.py", line 317 in pytest_cmdline_main
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/pluggy/_callers.py", line 77 in _multicall
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/pluggy/_manager.py", line 115 in _hookexec
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/pluggy/_hooks.py", line 493 in __call__
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/_pytest/config/__init__.py", line 166 in main
File "/Users/XX/dev/YY/.venv/lib/python3.10/site-packages/_pytest/config/__init__.py", line 189 in console_main
File "/Users/XX/dev/YY/.venv/bin/pytest", line 8 in <module>
Extension modules: numpy.core._multiarray_umath, numpy.core._multiarray_tests, numpy.linalg._umath_linalg, numpy.fft._pocketfft_internal, numpy.random._common, numpy.random.bit_generator, numpy.random._bounded_integers, numpy.random._mt19937, numpy.random.mtrand, numpy.random._philox, numpy.random._pcg64, numpy.random._sfc64, numpy.random._generator, pandas._libs.tslibs.np_datetime, pandas._libs.tslibs.dtypes, pandas._libs.tslibs.base, pandas._libs.tslibs.nattype, pandas._libs.tslibs.timezones, pandas._libs.tslibs.ccalendar, pandas._libs.tslibs.fields, pandas._libs.tslibs.timedeltas, pandas._libs.tslibs.tzconversion, pandas._libs.tslibs.timestamps, pandas._libs.properties, pandas._libs.tslibs.offsets, pandas._libs.tslibs.strptime, pandas._libs.tslibs.parsing, pandas._libs.tslibs.conversion, pandas._libs.tslibs.period, pandas._libs.tslibs.vectorized, pandas._libs.ops_dispatch, pandas._libs.missing, pandas._libs.hashtable, pandas._libs.algos, pandas._libs.interval, pandas._libs.lib, pandas._libs.ops, pandas._libs.arrays, pandas._libs.tslib, pandas._libs.sparse, pandas._libs.indexing, pandas._libs.index, pandas._libs.internals, pandas._libs.join, pandas._libs.writers, pandas._libs.window.aggregations, pandas._libs.window.indexers, pandas._libs.reshape, pandas._libs.groupby, pandas._libs.json, pandas._libs.parsers, pandas._libs.testing, lsm, torch._C, torch._C._fft, torch._C._linalg, torch._C._nested, torch._C._nn, torch._C._sparse, torch._C._special, charset_normalizer.md, yaml._yaml, scipy._lib._ccallback_c, scipy.sparse._sparsetools, _csparsetools, scipy.sparse._csparsetools, scipy.sparse.linalg._isolve._iterative, scipy.linalg._fblas, scipy.linalg._flapack, scipy.linalg._cythonized_array_utils, scipy.linalg._flinalg, scipy.linalg._solve_toeplitz, scipy.linalg._matfuncs_sqrtm_triu, scipy.linalg.cython_lapack, scipy.linalg.cython_blas, scipy.linalg._matfuncs_expm, scipy.linalg._decomp_update, scipy.sparse.linalg._dsolve._superlu, scipy.sparse.linalg._eigen.arpack._arpack, scipy.sparse.csgraph._tools, scipy.sparse.csgraph._shortest_path, scipy.sparse.csgraph._traversal, scipy.sparse.csgraph._min_spanning_tree, scipy.sparse.csgraph._flow, scipy.sparse.csgraph._matching, scipy.sparse.csgraph._reordering, _catboost, catboost._catboost, sklearn.__check_build._check_build, psutil._psutil_osx, psutil._psutil_posix, scipy.special._ufuncs_cxx, scipy.special._ufuncs, scipy.special._specfun, scipy.special._comb, scipy.special._ellip_harm_2, numpy.linalg.lapack_lite, scipy.spatial._ckdtree, scipy._lib.messagestream, scipy.spatial._qhull, scipy.spatial._voronoi, scipy.spatial._distance_wrap, scipy.spatial._hausdorff, scipy.spatial.transform._rotation, scipy.ndimage._nd_image, _ni_label, scipy.ndimage._ni_label, scipy.optimize._minpack2, scipy.optimize._group_columns, scipy.optimize._trlib._trlib, scipy.optimize._lbfgsb, _moduleTNC, scipy.optimize._moduleTNC, scipy.optimize._cobyla, scipy.optimize._slsqp, scipy.optimize._minpack, scipy.optimize._lsq.givens_elimination, scipy.optimize._zeros, scipy.optimize.__nnls, scipy.optimize._highs.cython.src._highs_wrapper, scipy.optimize._highs._highs_wrapper, scipy.optimize._highs.cython.src._highs_constants, scipy.optimize._highs._highs_constants, scipy.linalg._interpolative, scipy.optimize._bglu_dense, scipy.optimize._lsap, scipy.optimize._direct, scipy.integrate._odepack, scipy.integrate._quadpack, scipy.integrate._vode, scipy.integrate._dop, scipy.integrate._lsoda, scipy.special.cython_special, scipy.stats._stats, scipy.stats.beta_ufunc, scipy.stats._boost.beta_ufunc, scipy.stats.binom_ufunc, scipy.stats._boost.binom_ufunc, scipy.stats.nbinom_ufunc, scipy.stats._boost.nbinom_ufunc, scipy.stats.hypergeom_ufunc, scipy.stats._boost.hypergeom_ufunc, scipy.stats.ncf_ufunc, scipy.stats._boost.ncf_ufunc, scipy.interpolate._fitpack, scipy.interpolate.dfitpack, scipy.interpolate._bspl, scipy.interpolate._ppoly, scipy.interpolate.interpnd, scipy.interpolate._rbfinterp_pythran, scipy.stats._biasedurn, scipy.stats._levy_stable.levyst, scipy._lib._uarray._uarray, scipy.stats._hypotests_pythran, scipy.stats._statlib, scipy.stats._mvn, scipy.stats._sobol, scipy.stats._qmc_cy, scipy.stats.unuran_wrapper, scipy.stats._unuran.unuran_wrapper, sklearn.utils._isfinite, sklearn.utils.murmurhash, sklearn.utils._openmp_helpers, sklearn.metrics.cluster._expected_mutual_info_fast, sklearn.utils._logistic_sigmoid, sklearn.utils.sparsefuncs_fast, sklearn.preprocessing._csr_polynomial_expansion, sklearn.preprocessing._target_encoder_fast, sklearn.metrics._dist_metrics, sklearn.metrics._pairwise_distances_reduction._datasets_pair, sklearn.utils._cython_blas, sklearn.metrics._pairwise_distances_reduction._base, sklearn.metrics._pairwise_distances_reduction._middle_term_computer, sklearn.utils._heap, sklearn.utils._sorting, sklearn.metrics._pairwise_distances_reduction._argkmin, sklearn.metrics._pairwise_distances_reduction._argkmin_classmode, sklearn.utils._vector_sentinel, sklearn.metrics._pairwise_distances_reduction._radius_neighbors, sklearn.metrics._pairwise_fast, sklearn.utils._random, PIL._imaging, faiss._swigfaiss, sklearn.utils._seq_dataset, sklearn.linear_model._cd_fast, sklearn._loss._loss, sklearn.utils.arrayfuncs, sklearn.svm._liblinear, sklearn.svm._libsvm, sklearn.svm._libsvm_sparse, sklearn.utils._weight_vector, sklearn.linear_model._sgd_fast, sklearn.linear_model._sag_fast, sklearn.decomposition._online_lda_fast, sklearn.decomposition._cdnmf_fast, multidict._multidict, yarl._quoting_c, aiohttp._helpers, aiohttp._http_writer, aiohttp._http_parser, aiohttp._websocket, frozenlist._frozenlist, regex._regex (total: 203)
[1] 46426 segmentation fault pytest
Eval metric
class BiasedMaeMetric:
"""
MAE Metric using a custom biased weight for the classes
"""
def is_max_optimal(self) -> bool:
# Returns whether great values of metric are better
return False
@classmethod
def evaluate(
cls,
approxes: tuple[np.ndarray, ...],
target: np.ndarray,
weight: np.ndarray | None,
) -> tuple[float, int]:
# Returns pair (error, weights sum)
if weight is not None:
warnings.warn(
"`BiasedMaeMetric` ignores sample weights and uses BIASED_CLASS_WEIGHTS.",
stacklevel=1,
)
size = target.size
##
# Normalize predictions
approxes_t = np.transpose(np.stack(approxes))
norm_pred = scipy.special.softmax(approxes_t, axis=1)
##
# Labels to one hot encode
clipped_target = np.clip(
target, a_min=0.0, a_max=3.0, casting="unsafe", dtype=np.int8
)
one_hot_target = np.zeros((size, clipped_target.max() + 1), dtype=np.int8)
one_hot_target[np.arange(size), clipped_target] = 1
# MAE
abs_diff_padded = pad(np.abs(one_hot_target - norm_pred), BIASED_CLASS_WEIGHTS)
sum_mae = np.sum(np.dot(abs_diff_padded, BIASED_CLASS_WEIGHTS))
weight_mae = size
return sum_mae, weight_mae
def get_final_error(self, error: float, weight: int) -> float:
# Returns final value of metric based on error and weight
return error / (weight + 1e-38)
def pad(a: np.array, class_weight: np.array, fill_with: float = 0) -> np.array:
# If a class is missing form the batch, the weights can be the wrong dim
return np.pad(
a,
pad_width=((0, 0), (0, len(class_weight) - a.shape[1])),
constant_values=fill_with,
)