forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 3
[Draft] Generic metadata sample #9
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
Closed
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Second approach to inform driver about metadata. Let user decide if metadata should be supported or not. Add this flag to allow user to inform driver that metadata is used. Set flag is sent to driver via exsisting ndo_bpf call in flag field. Signed-off-by: Michal Swiatkowski <michal.swiatkowski@intel.com>
Definition is only a proposal. There should be free place for 8B of tx timestamp. Signed-off-by: Michal Swiatkowski <michal.swiatkowski@intel.com>
As starting point add vlan id and rss hash if xdp metadata is supported. Add xd_metadata_support field in VSI to allow easy passing this value to ring configuration. Signed-off-by: Michal Swiatkowski <michal.swiatkowski@intel.com>
Signed-off-by: Michal Swiatkowski <michal.swiatkowski@intel.com>
Function btf_get_type_id is needed to get correct BTF id to fill metadata by driver. BTF id is obtained while loading XDP program and saved in ring structure to be available in irq. Calling btf_get_type_id with null pointer as module will result in searching for BTF id in vmlinux. Also cleanup sample code to print id from metadata and from libbpf. Moving btf_id in generic metadata structure is temporary solution. Signed-off-by: Ederson de Souza <ederson.desouza@intel.com> Signed-off-by: Michal Swiatkowski <michal.swiatkowski@intel.com>
alobakin
pushed a commit
that referenced
this pull request
Oct 1, 2021
Ido Schimmel says: ==================== mlxsw: Add support for transceiver modules reset This patchset prepares mlxsw for future transceiver modules related [1] changes and adds reset support via the existing 'ETHTOOL_RESET' interface. Patches #1-#6 are relatively straightforward preparations. Patch #7 tracks the number of logical ports that are mapped to the transceiver module and the number of logical ports using it that are administratively up. Needed for both reset support and power mode policy support. Patches #8-#9 add required fields in device registers. Patch #10 implements support for ethtool_ops::reset in order to reset transceiver modules. [1] https://lore.kernel.org/netdev/20210824130344.1828076-1-idosch@idosch.org/ ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
alobakin
pushed a commit
that referenced
this pull request
Oct 1, 2021
It's later supposed to be either a correct address or NULL. Without the initialization, it may contain an undefined value which results in the following segmentation fault: # perf top --sort comm -g --ignore-callees=do_idle terminates with: #0 0x00007ffff56b7685 in __strlen_avx2 () from /lib64/libc.so.6 #1 0x00007ffff55e3802 in strdup () from /lib64/libc.so.6 #2 0x00005555558cb139 in hist_entry__init (callchain_size=<optimized out>, sample_self=true, template=0x7fffde7fb110, he=0x7fffd801c250) at util/hist.c:489 #3 hist_entry__new (template=template@entry=0x7fffde7fb110, sample_self=sample_self@entry=true) at util/hist.c:564 #4 0x00005555558cb4ba in hists__findnew_entry (hists=hists@entry=0x5555561d9e38, entry=entry@entry=0x7fffde7fb110, al=al@entry=0x7fffde7fb420, sample_self=sample_self@entry=true) at util/hist.c:657 #5 0x00005555558cba1b in __hists__add_entry (hists=hists@entry=0x5555561d9e38, al=0x7fffde7fb420, sym_parent=<optimized out>, bi=bi@entry=0x0, mi=mi@entry=0x0, sample=sample@entry=0x7fffde7fb4b0, sample_self=true, ops=0x0, block_info=0x0) at util/hist.c:288 #6 0x00005555558cbb70 in hists__add_entry (sample_self=true, sample=0x7fffde7fb4b0, mi=0x0, bi=0x0, sym_parent=<optimized out>, al=<optimized out>, hists=0x5555561d9e38) at util/hist.c:1056 #7 iter_add_single_cumulative_entry (iter=0x7fffde7fb460, al=<optimized out>) at util/hist.c:1056 #8 0x00005555558cc8a4 in hist_entry_iter__add (iter=iter@entry=0x7fffde7fb460, al=al@entry=0x7fffde7fb420, max_stack_depth=<optimized out>, arg=arg@entry=0x7fffffff7db0) at util/hist.c:1231 #9 0x00005555557cdc9a in perf_event__process_sample (machine=<optimized out>, sample=0x7fffde7fb4b0, evsel=<optimized out>, event=<optimized out>, tool=0x7fffffff7db0) at builtin-top.c:842 #10 deliver_event (qe=<optimized out>, qevent=<optimized out>) at builtin-top.c:1202 #11 0x00005555558a9318 in do_flush (show_progress=false, oe=0x7fffffff80e0) at util/ordered-events.c:244 #12 __ordered_events__flush (oe=oe@entry=0x7fffffff80e0, how=how@entry=OE_FLUSH__TOP, timestamp=timestamp@entry=0) at util/ordered-events.c:323 #13 0x00005555558a9789 in __ordered_events__flush (timestamp=<optimized out>, how=<optimized out>, oe=<optimized out>) at util/ordered-events.c:339 #14 ordered_events__flush (how=OE_FLUSH__TOP, oe=0x7fffffff80e0) at util/ordered-events.c:341 #15 ordered_events__flush (oe=oe@entry=0x7fffffff80e0, how=how@entry=OE_FLUSH__TOP) at util/ordered-events.c:339 #16 0x00005555557cd631 in process_thread (arg=0x7fffffff7db0) at builtin-top.c:1114 #17 0x00007ffff7bb817a in start_thread () from /lib64/libpthread.so.0 #18 0x00007ffff5656dc3 in clone () from /lib64/libc.so.6 If you look at the frame #2, the code is: 488 if (he->srcline) { 489 he->srcline = strdup(he->srcline); 490 if (he->srcline == NULL) 491 goto err_rawdata; 492 } If he->srcline is not NULL (it is not NULL if it is uninitialized rubbish), it gets strdupped and strdupping a rubbish random string causes the problem. Also, if you look at the commit 1fb7d06, it adds the srcline property into the struct, but not initializing it everywhere needed. Committer notes: Now I see, when using --ignore-callees=do_idle we end up here at line 2189 in add_callchain_ip(): 2181 if (al.sym != NULL) { 2182 if (perf_hpp_list.parent && !*parent && 2183 symbol__match_regex(al.sym, &parent_regex)) 2184 *parent = al.sym; 2185 else if (have_ignore_callees && root_al && 2186 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2187 /* Treat this symbol as the root, 2188 forgetting its callees. */ 2189 *root_al = al; 2190 callchain_cursor_reset(cursor); 2191 } 2192 } And the al that doesn't have the ->srcline field initialized will be copied to the root_al, so then, back to: 1211 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al, 1212 int max_stack_depth, void *arg) 1213 { 1214 int err, err2; 1215 struct map *alm = NULL; 1216 1217 if (al) 1218 alm = map__get(al->map); 1219 1220 err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent, 1221 iter->evsel, al, max_stack_depth); 1222 if (err) { 1223 map__put(alm); 1224 return err; 1225 } 1226 1227 err = iter->ops->prepare_entry(iter, al); 1228 if (err) 1229 goto out; 1230 1231 err = iter->ops->add_single_entry(iter, al); 1232 if (err) 1233 goto out; 1234 That al at line 1221 is what hist_entry_iter__add() (called from sample__resolve_callchain()) saw as 'root_al', and then: iter->ops->add_single_entry(iter, al); will go on with al->srcline with a bogus value, I'll add the above sequence to the cset and apply, thanks! Signed-off-by: Michael Petlan <mpetlan@redhat.com> CC: Milian Wolff <milian.wolff@kdab.com> Cc: Jiri Olsa <jolsa@redhat.com> Fixes: 1fb7d06 ("perf report Use srcline from callchain for hist entries") Link: https //lore.kernel.org/r/20210719145332.29747-1-mpetlan@redhat.com Reported-by: Juri Lelli <jlelli@redhat.com> Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
alobakin
pushed a commit
that referenced
this pull request
Oct 1, 2021
FD uses xyarray__entry that may return NULL if an index is out of bounds. If NULL is returned then a segv happens as FD unconditionally dereferences the pointer. This was happening in a case of with perf iostat as shown below. The fix is to make FD an "int*" rather than an int and handle the NULL case as either invalid input or a closed fd. $ sudo gdb --args perf stat --iostat list ... Breakpoint 1, perf_evsel__alloc_fd (evsel=0x5555560951a0, ncpus=1, nthreads=1) at evsel.c:50 50 { (gdb) bt #0 perf_evsel__alloc_fd (evsel=0x5555560951a0, ncpus=1, nthreads=1) at evsel.c:50 #1 0x000055555585c188 in evsel__open_cpu (evsel=0x5555560951a0, cpus=0x555556093410, threads=0x555556086fb0, start_cpu=0, end_cpu=1) at util/evsel.c:1792 #2 0x000055555585cfb2 in evsel__open (evsel=0x5555560951a0, cpus=0x0, threads=0x555556086fb0) at util/evsel.c:2045 #3 0x000055555585d0db in evsel__open_per_thread (evsel=0x5555560951a0, threads=0x555556086fb0) at util/evsel.c:2065 #4 0x00005555558ece64 in create_perf_stat_counter (evsel=0x5555560951a0, config=0x555555c34700 <stat_config>, target=0x555555c2f1c0 <target>, cpu=0) at util/stat.c:590 #5 0x000055555578e927 in __run_perf_stat (argc=1, argv=0x7fffffffe4a0, run_idx=0) at builtin-stat.c:833 #6 0x000055555578f3c6 in run_perf_stat (argc=1, argv=0x7fffffffe4a0, run_idx=0) at builtin-stat.c:1048 #7 0x0000555555792ee5 in cmd_stat (argc=1, argv=0x7fffffffe4a0) at builtin-stat.c:2534 #8 0x0000555555835ed3 in run_builtin (p=0x555555c3f540 <commands+288>, argc=3, argv=0x7fffffffe4a0) at perf.c:313 #9 0x0000555555836154 in handle_internal_command (argc=3, argv=0x7fffffffe4a0) at perf.c:365 #10 0x000055555583629f in run_argv (argcp=0x7fffffffe2ec, argv=0x7fffffffe2e0) at perf.c:409 #11 0x0000555555836692 in main (argc=3, argv=0x7fffffffe4a0) at perf.c:539 ... (gdb) c Continuing. Error: The sys_perf_event_open() syscall returned with 22 (Invalid argument) for event (uncore_iio_0/event=0x83,umask=0x04,ch_mask=0xF,fc_mask=0x07/). /bin/dmesg | grep -i perf may provide additional information. Program received signal SIGSEGV, Segmentation fault. 0x00005555559b03ea in perf_evsel__close_fd_cpu (evsel=0x5555560951a0, cpu=1) at evsel.c:166 166 if (FD(evsel, cpu, thread) >= 0) v3. fixes a bug in perf_evsel__run_ioctl where the sense of a branch was backward. Signed-off-by: Ian Rogers <irogers@google.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lore.kernel.org/lkml/20210918054440.2350466-1-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
alobakin
pushed a commit
that referenced
this pull request
Oct 1, 2021
Ido Schimmel says: ==================== mlxsw: Add support for IP-in-IP with IPv6 underlay Currently, mlxsw only supports IP-in-IP with IPv4 underlay. Traffic routed through 'gre' netdevs is encapsulated with IPv4 and GRE headers. Similarly, incoming IPv4 GRE packets are decapsulated and routed in the overlay VRF (which can be the same as the underlay VRF). This patchset adds support for IPv6 underlay using the 'ip6gre' netdev. Due to architectural differences between Spectrum-1 and later ASICs, this functionality is only supported on Spectrum-2 onwards (the software data path is used for Spectrum-1). Patchset overview: Patches #1-#5 are preparations. Patches #6-#9 add and extend required device registers. Patches #10-#14 gradually add IPv6 underlay support. A follow-up patchset will add net/forwarding/ selftests. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
alobakin
pushed a commit
that referenced
this pull request
Oct 7, 2021
Andrii Nakryiko says: ==================== Implement opt-in stricter BPF program section name (SEC()) handling logic. For a lot of supported ELF section names, enforce exact section name match with no arbitrary characters added at the end. See patch #9 for more details. To allow this, patches #2 through #4 clean up and preventively fix selftests, normalizing existing SEC() usage across multiple selftests. While at it, those patches also reduce the amount of remaining bpf_object__find_program_by_title() uses, which should be completely removed soon, given it's an API with ambiguous semantics and will be deprecated and eventually removed in libbpf 1.0. Patch #1 also introduces SEC("tc") as an alias for SEC("classifier"). "tc" is a better and less misleading name, so patch #3 replaces all classifier* uses with nice and short SEC("tc"). Last patch is also fixing "sk_lookup/" definition to not require and not allow extra "/blah" parts after it, which serve no meaning. All the other patches are gradual internal libbpf changes to: - allow this optional strict logic for ELF section name handling; - allow new use case (for now for "struct_ops", but that could be extended to, say, freplace definitions), in which it can be used stand-alone to specify just type (SEC("struct_ops")), or also accept extra parameters which can be utilized by libbpf to either get more data or double-check valid use (e.g., SEC("struct_ops/dctcp_init") to specify desired struct_ops operation that is supposed to be implemented); - get libbpf's internal logic ready to allow other libraries and applications to specify their custom handlers for ELF section name for BPF programs. All the pieces are in place, the only thing preventing making this as public libbpf API is reliance on internal type for specifying BPF program load attributes. The work is planned to revamp related low-level libbpf APIs, at which point it will be possible to just re-use such new types for coordination between libbpf and custom handlers. These changes are a part of libbpf 1.0 effort ([0]). They are also intended to be applied on top of the previous preparatory series [1], so currently CI will be failing to apply them to bpf-next until that patch set is landed. Once it is landed, kernel-patches daemon will automatically retest this patch set. [0] https://github.com/libbpf/libbpf/wiki/Libbpf:-the-road-to-v1.0#stricter-and-more-uniform-bpf-program-section-name-sec-handling [1] https://patchwork.kernel.org/project/netdevbpf/list/?series=547675&state=* v3->v4: - replace SEC("classifier*") with SEC("tc") (Daniel); v2->v3: - applied acks, addressed most feedback, added comments to new flags (Dave); v1->v2: - rebase onto latest bpf-next and resolve merge conflicts w/ Dave's changes. ==================== Signed-off-by: Alexei Starovoitov <ast@kernel.org>
alobakin
pushed a commit
that referenced
this pull request
Oct 20, 2021
Ido Schimmel says: ==================== mlxsw: Multi-level qdisc offload Petr says: Currently, mlxsw admits for offload a suitable root qdisc, and its children. Thus up to two levels of hierarchy are offloaded. Often, this is enough: one can configure TCs with RED and TCs with a shaper on, and can even see counters for each TC by looking at a qdisc at a sufficiently shallow position. While simple, the system has obvious shortcomings. It is not possible to configure both RED and shaping on one TC. It is not possible to place a PRIO below root TBF, which would then be offloaded as port shaper. FIFOs are only offloaded at root or directly below, which is confusing to users, because RED and TBF of course have their own FIFO. This patch set lifts assumptions that prevent offloading multi-level qdisc trees. In patch #1, offload of a graft operation is added to TBF. Grafts are issued as another qdisc is linked to the qdisc in question, and give drivers a chance to react to the linking. The absence of this event was not a major issue so far, because TBF was not considered classful, which changes with this patchset. The codebase currently assumes that ETS and PRIO are the only classful qdiscs. The following patches gradually lift this assumption. In patch #2, calculation of traffic class and priomap of a qdisc is fixed. Patch #3 fixes handling of future FIFOs. Child FIFO qdiscs may be created and notified before their parent qdisc exists and therefore need special handling. Patches #4, #5 and #6 unify, respectively, child destruction, child grafting, and cleanup of statistics. Patch #7 adds a function that validates whether a given qdisc topology is offloadable. Finally in patch #8, TBF and RED become classful. At this point, FIFO qdiscs grafted to an offloaded qdisc should always be offloaded. Patch #9 adds a selftest to verify some offloadable and unoffloadable qdisc trees. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
alobakin
pushed a commit
that referenced
this pull request
Oct 22, 2021
If a cell has 'nbits' equal to a multiple of BITS_PER_BYTE the logic *p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0); will become undefined behavior because nbits modulo BITS_PER_BYTE is 0, and we subtract one from that making a large number that is then shifted more than the number of bits that fit into an unsigned long. UBSAN reports this problem: UBSAN: shift-out-of-bounds in drivers/nvmem/core.c:1386:8 shift exponent 64 is too large for 64-bit type 'unsigned long' CPU: 6 PID: 7 Comm: kworker/u16:0 Not tainted 5.15.0-rc3+ #9 Hardware name: Google Lazor (rev3+) with KB Backlight (DT) Workqueue: events_unbound deferred_probe_work_func Call trace: dump_backtrace+0x0/0x170 show_stack+0x24/0x30 dump_stack_lvl+0x64/0x7c dump_stack+0x18/0x38 ubsan_epilogue+0x10/0x54 __ubsan_handle_shift_out_of_bounds+0x180/0x194 __nvmem_cell_read+0x1ec/0x21c nvmem_cell_read+0x58/0x94 nvmem_cell_read_variable_common+0x4c/0xb0 nvmem_cell_read_variable_le_u32+0x40/0x100 a6xx_gpu_init+0x170/0x2f4 adreno_bind+0x174/0x284 component_bind_all+0xf0/0x264 msm_drm_bind+0x1d8/0x7a0 try_to_bring_up_master+0x164/0x1ac __component_add+0xbc/0x13c component_add+0x20/0x2c dp_display_probe+0x340/0x384 platform_probe+0xc0/0x100 really_probe+0x110/0x304 __driver_probe_device+0xb8/0x120 driver_probe_device+0x4c/0xfc __device_attach_driver+0xb0/0x128 bus_for_each_drv+0x90/0xdc __device_attach+0xc8/0x174 device_initial_probe+0x20/0x2c bus_probe_device+0x40/0xa4 deferred_probe_work_func+0x7c/0xb8 process_one_work+0x128/0x21c process_scheduled_works+0x40/0x54 worker_thread+0x1ec/0x2a8 kthread+0x138/0x158 ret_from_fork+0x10/0x20 Fix it by making sure there are any bits to mask out. Fixes: 69aba79 ("nvmem: Add a simple NVMEM framework for consumers") Cc: Douglas Anderson <dianders@chromium.org> Cc: stable@vger.kernel.org Signed-off-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> Link: https://lore.kernel.org/r/20211013124511.18726-1-srinivas.kandagatla@linaro.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
alobakin
pushed a commit
that referenced
this pull request
Oct 29, 2021
Ido Schimmel says: ==================== mlxsw: Support multiple RIF MAC prefixes Currently, mlxsw enforces that all the netdevs used as router interfaces (RIFs) have the same MAC prefix (e.g., same 38 MSBs in Spectrum-1). Otherwise, an error is returned to user space with extack. This patchset relaxes the limitation through the use of RIF MAC profiles. A RIF MAC profile is a hardware entity that represents a particular MAC prefix which multiple RIFs can reference. Therefore, the number of possible MAC prefixes is no longer one, but the number of profiles supported by the device. The ability to change the MAC of a particular netdev is useful, for example, for users who use the netdev to connect to an upstream provider that performs MAC filtering. Currently, such users are either forced to negotiate with the provider or change the MAC address of all other netdevs so that they share the same prefix. Patchset overview: Patches #1-#3 are preparations. Patch #4 adds actual support for RIF MAC profiles. Patch #5 exposes RIF MAC profiles as a devlink resource, so that user space has visibility into the maximum number of profiles and current occupancy. Useful for debugging and testing (next 3 patches). Patches #6-#8 add both scale and functional tests. Patch #9 removes tests that validated the previous limitation. It is now covered by patch #6 for devices that support a single profile. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
alobakin
pushed a commit
that referenced
this pull request
Nov 3, 2021
Attempting to defragment a Btrfs file containing a transparent huge page immediately deadlocks with the following stack trace: #0 context_switch (kernel/sched/core.c:4940:2) #1 __schedule (kernel/sched/core.c:6287:8) #2 schedule (kernel/sched/core.c:6366:3) #3 io_schedule (kernel/sched/core.c:8389:2) #4 wait_on_page_bit_common (mm/filemap.c:1356:4) #5 __lock_page (mm/filemap.c:1648:2) #6 lock_page (./include/linux/pagemap.h:625:3) #7 pagecache_get_page (mm/filemap.c:1910:4) #8 find_or_create_page (./include/linux/pagemap.h:420:9) #9 defrag_prepare_one_page (fs/btrfs/ioctl.c:1068:9) #10 defrag_one_range (fs/btrfs/ioctl.c:1326:14) #11 defrag_one_cluster (fs/btrfs/ioctl.c:1421:9) #12 btrfs_defrag_file (fs/btrfs/ioctl.c:1523:9) #13 btrfs_ioctl_defrag (fs/btrfs/ioctl.c:3117:9) #14 btrfs_ioctl (fs/btrfs/ioctl.c:4872:10) #15 vfs_ioctl (fs/ioctl.c:51:10) #16 __do_sys_ioctl (fs/ioctl.c:874:11) #17 __se_sys_ioctl (fs/ioctl.c:860:1) #18 __x64_sys_ioctl (fs/ioctl.c:860:1) #19 do_syscall_x64 (arch/x86/entry/common.c:50:14) #20 do_syscall_64 (arch/x86/entry/common.c:80:7) #21 entry_SYSCALL_64+0x7c/0x15b (arch/x86/entry/entry_64.S:113) A huge page is represented by a compound page, which consists of a struct page for each PAGE_SIZE page within the huge page. The first struct page is the "head page", and the remaining are "tail pages". Defragmentation attempts to lock each page in the range. However, lock_page() on a tail page actually locks the corresponding head page. So, if defragmentation tries to lock more than one struct page in a compound page, it tries to lock the same head page twice and deadlocks with itself. Ideally, we should be able to defragment transparent huge pages. However, THP for filesystems is currently read-only, so a lot of code is not ready to use huge pages for I/O. For now, let's just return ETXTBUSY. This can be reproduced with the following on a kernel with CONFIG_READ_ONLY_THP_FOR_FS=y: $ cat create_thp_file.c #include <fcntl.h> #include <stdbool.h> #include <stdio.h> #include <stdint.h> #include <stdlib.h> #include <unistd.h> #include <sys/mman.h> static const char zeroes[1024 * 1024]; static const size_t FILE_SIZE = 2 * 1024 * 1024; int main(int argc, char **argv) { if (argc != 2) { fprintf(stderr, "usage: %s PATH\n", argv[0]); return EXIT_FAILURE; } int fd = creat(argv[1], 0777); if (fd == -1) { perror("creat"); return EXIT_FAILURE; } size_t written = 0; while (written < FILE_SIZE) { ssize_t ret = write(fd, zeroes, sizeof(zeroes) < FILE_SIZE - written ? sizeof(zeroes) : FILE_SIZE - written); if (ret < 0) { perror("write"); return EXIT_FAILURE; } written += ret; } close(fd); fd = open(argv[1], O_RDONLY); if (fd == -1) { perror("open"); return EXIT_FAILURE; } /* * Reserve some address space so that we can align the file mapping to * the huge page size. */ void *placeholder_map = mmap(NULL, FILE_SIZE * 2, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (placeholder_map == MAP_FAILED) { perror("mmap (placeholder)"); return EXIT_FAILURE; } void *aligned_address = (void *)(((uintptr_t)placeholder_map + FILE_SIZE - 1) & ~(FILE_SIZE - 1)); void *map = mmap(aligned_address, FILE_SIZE, PROT_READ | PROT_EXEC, MAP_SHARED | MAP_FIXED, fd, 0); if (map == MAP_FAILED) { perror("mmap"); return EXIT_FAILURE; } if (madvise(map, FILE_SIZE, MADV_HUGEPAGE) < 0) { perror("madvise"); return EXIT_FAILURE; } char *line = NULL; size_t line_capacity = 0; FILE *smaps_file = fopen("/proc/self/smaps", "r"); if (!smaps_file) { perror("fopen"); return EXIT_FAILURE; } for (;;) { for (size_t off = 0; off < FILE_SIZE; off += 4096) ((volatile char *)map)[off]; ssize_t ret; bool this_mapping = false; while ((ret = getline(&line, &line_capacity, smaps_file)) > 0) { unsigned long start, end, huge; if (sscanf(line, "%lx-%lx", &start, &end) == 2) { this_mapping = (start <= (uintptr_t)map && (uintptr_t)map < end); } else if (this_mapping && sscanf(line, "FilePmdMapped: %ld", &huge) == 1 && huge > 0) { return EXIT_SUCCESS; } } sleep(6); rewind(smaps_file); fflush(smaps_file); } } $ ./create_thp_file huge $ btrfs fi defrag -czstd ./huge Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Omar Sandoval <osandov@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
alobakin
pushed a commit
that referenced
this pull request
Nov 23, 2021
…gy() When testing cpu online and offline, warning happened like this: [ 146.746743] WARNING: CPU: 92 PID: 974 at kernel/sched/topology.c:2215 build_sched_domains+0x81c/0x11b0 [ 146.749988] CPU: 92 PID: 974 Comm: kworker/92:2 Not tainted 5.15.0 #9 [ 146.750402] Hardware name: Huawei TaiShan 2280 V2/BC82AMDDA, BIOS 1.79 08/21/2021 [ 146.751213] Workqueue: events cpuset_hotplug_workfn [ 146.751629] pstate: 00400009 (nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 146.752048] pc : build_sched_domains+0x81c/0x11b0 [ 146.752461] lr : build_sched_domains+0x414/0x11b0 [ 146.752860] sp : ffff800040a83a80 [ 146.753247] x29: ffff800040a83a80 x28: ffff20801f13a980 x27: ffff20800448ae00 [ 146.753644] x26: ffff800012a858e8 x25: ffff800012ea48c0 x24: 0000000000000000 [ 146.754039] x23: ffff800010ab7d60 x22: ffff800012f03758 x21: 000000000000005f [ 146.754427] x20: 000000000000005c x19: ffff004080012840 x18: ffffffffffffffff [ 146.754814] x17: 3661613030303230 x16: 30303078303a3239 x15: ffff800011f92b48 [ 146.755197] x14: ffff20be3f95cef6 x13: 2e6e69616d6f642d x12: 6465686373204c4c [ 146.755578] x11: ffff20bf7fc83a00 x10: 0000000000000040 x9 : 0000000000000000 [ 146.755957] x8 : 0000000000000002 x7 : ffffffffe0000000 x6 : 0000000000000002 [ 146.756334] x5 : 0000000090000000 x4 : 00000000f0000000 x3 : 0000000000000001 [ 146.756705] x2 : 0000000000000080 x1 : ffff800012f03860 x0 : 0000000000000001 [ 146.757070] Call trace: [ 146.757421] build_sched_domains+0x81c/0x11b0 [ 146.757771] partition_sched_domains_locked+0x57c/0x978 [ 146.758118] rebuild_sched_domains_locked+0x44c/0x7f0 [ 146.758460] rebuild_sched_domains+0x2c/0x48 [ 146.758791] cpuset_hotplug_workfn+0x3fc/0x888 [ 146.759114] process_one_work+0x1f4/0x480 [ 146.759429] worker_thread+0x48/0x460 [ 146.759734] kthread+0x158/0x168 [ 146.760030] ret_from_fork+0x10/0x20 [ 146.760318] ---[ end trace 82c44aad6900e81a ]--- For some architectures like risc-v and arm64 which use common code clear_cpu_topology() in shutting down CPUx, When CONFIG_SCHED_CLUSTER is set, cluster_sibling in cpu_topology of each sibling adjacent to CPUx is missed clearing, this causes checking failed in topology_span_sane() and rebuilding topology failure at end when CPU online. Different sibling's cluster_sibling in cpu_topology[] when CPU92 offline (CPU 92, 93, 94, 95 are in one cluster): Before revision: CPU [92] [93] [94] [95] cluster_sibling [92] [92-95] [92-95] [92-95] After revision: CPU [92] [93] [94] [95] cluster_sibling [92] [93-95] [93-95] [93-95] Signed-off-by: Wang ShaoBo <bobo.shaobowang@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Acked-by: Barry Song <song.bao.hua@hisilicon.com> Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lore.kernel.org/r/20211110095856.469360-1-bobo.shaobowang@huawei.com
alobakin
pushed a commit
that referenced
this pull request
Nov 23, 2021
The exit function fixes a memory leak with the src field as detected by leak sanitizer. An example of which is: Indirect leak of 25133184 byte(s) in 207 object(s) allocated from: #0 0x7f199ecfe987 in __interceptor_calloc libsanitizer/asan/asan_malloc_linux.cpp:154 #1 0x55defe638224 in annotated_source__alloc_histograms util/annotate.c:803 #2 0x55defe6397e4 in symbol__hists util/annotate.c:952 #3 0x55defe639908 in symbol__inc_addr_samples util/annotate.c:968 #4 0x55defe63aa29 in hist_entry__inc_addr_samples util/annotate.c:1119 #5 0x55defe499a79 in hist_iter__report_callback tools/perf/builtin-report.c:182 #6 0x55defe7a859d in hist_entry_iter__add util/hist.c:1236 #7 0x55defe49aa63 in process_sample_event tools/perf/builtin-report.c:315 #8 0x55defe731bc8 in evlist__deliver_sample util/session.c:1473 #9 0x55defe731e38 in machines__deliver_event util/session.c:1510 #10 0x55defe732a23 in perf_session__deliver_event util/session.c:1590 #11 0x55defe72951e in ordered_events__deliver_event util/session.c:183 #12 0x55defe740082 in do_flush util/ordered-events.c:244 #13 0x55defe7407cb in __ordered_events__flush util/ordered-events.c:323 #14 0x55defe740a61 in ordered_events__flush util/ordered-events.c:341 #15 0x55defe73837f in __perf_session__process_events util/session.c:2390 #16 0x55defe7385ff in perf_session__process_events util/session.c:2420 ... Signed-off-by: Ian Rogers <irogers@google.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Clark <james.clark@arm.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Martin Liška <mliska@suse.cz> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: https://lore.kernel.org/r/20211112035124.94327-3-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
walking-machine
pushed a commit
that referenced
this pull request
Mar 10, 2022
kvartet reported, that hci_uart_tx_wakeup() uses uninitialized rwsem. The problem was in wrong place for percpu_init_rwsem() call. hci_uart_proto::open() may register a timer whose callback may call hci_uart_tx_wakeup(). There is a chance, that hci_uart_register_device() thread won't be fast enough to call percpu_init_rwsem(). Fix it my moving percpu_init_rwsem() call before p->open(). INFO: trying to register non-static key. The code is fine but needs lockdep annotation, or maybe you didn't initialize this object before use? turning off the locking correctness validator. CPU: 2 PID: 18524 Comm: syz-executor.5 Not tainted 5.16.0-rc6 #9 ... Call Trace: <IRQ> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 assign_lock_key kernel/locking/lockdep.c:951 [inline] register_lock_class+0x148d/0x1950 kernel/locking/lockdep.c:1263 __lock_acquire+0x106/0x57e0 kernel/locking/lockdep.c:4906 lock_acquire kernel/locking/lockdep.c:5637 [inline] lock_acquire+0x1ab/0x520 kernel/locking/lockdep.c:5602 percpu_down_read_trylock include/linux/percpu-rwsem.h:92 [inline] hci_uart_tx_wakeup+0x12e/0x490 drivers/bluetooth/hci_ldisc.c:124 h5_timed_event+0x32f/0x6a0 drivers/bluetooth/hci_h5.c:188 call_timer_fn+0x1a5/0x6b0 kernel/time/timer.c:1421 Fixes: d73e172 ("Bluetooth: hci_serdev: Init hci_uart proto_lock to avoid oops") Reported-by: Yiru Xu <xyru1999@gmail.com> Signed-off-by: Pavel Skripkin <paskripkin@gmail.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
walking-machine
pushed a commit
that referenced
this pull request
Mar 10, 2022
Ido Schimmel says: ==================== mlxsw: Add RJ45 ports support We are in the process of qualifying a new system that has RJ45 ports as opposed to the transceiver modules (e.g., SFP, QSFP) present on all existing systems. This patchset adds support for these ports in mlxsw by adding a couple of missing BaseT link modes and rejecting ethtool operations that are specific to transceiver modules. Patchset overview: Patches #1-#3 are cleanups and preparations. Patch #4 adds support for two new link modes. Patches #5-#6 query and cache the port module's type (e.g., QSFP, RJ45) during initialization. Patches #7-#9 forbid ethtool operations that are invalid on RJ45 ports. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
walking-machine
pushed a commit
that referenced
this pull request
Mar 10, 2022
Ido Schimmel says: ==================== HW counters for soft devices Petr says: Offloading switch device drivers may be able to collect statistics of the traffic taking place in the HW datapath that pertains to a certain soft netdevice, such as a VLAN. In this patch set, add the necessary infrastructure to allow exposing these statistics to the offloaded netdevice in question, and add mlxsw offload. Across HW platforms, the counter itself very likely constitutes a limited resource, and the act of counting may have a performance impact. Therefore this patch set makes the HW statistics collection opt-in and togglable from userspace on a per-netdevice basis. Additionally, HW devices may have various limiting conditions under which they can realize the counter. Therefore it is also possible to query whether the requested counter is realized by any driver. In TC parlance, which is to a degree reused in this patch set, two values are recognized: "request" tracks whether the user enabled collecting HW statistics, and "used" tracks whether any HW statistics are actually collected. In the past, this author has expressed the opinion that `a typical user doing "ip -s l sh", including various scripts, wants to see the full picture and not worry what's going on where'. While that would be nice, unfortunately it cannot work: - Packets that trap from the HW datapath to the SW datapath would be double counted. For a given netdevice, some traffic can be purely a SW artifact, and some may flow through the HW object corresponding to the netdevice. But some traffic can also get trapped to the SW datapath after bumping the HW counter. It is not clear how to make sure double-counting does not occur in the SW datapath in that case, while still making sure that possibly divergent SW forwarding path gets bumped as appropriate. So simply adding HW and SW stats may work roughly, most of the time, but there are scenarios where the result is nonsensical. - HW devices will have limitations as to what type of traffic they can count. In case of mlxsw, which is part of this patch set, there is no reasonable way to count all traffic going through a certain netdevice, such as a VLAN netdevice enslaved to a bridge. It is however very simple to count traffic flowing through an L3 object, such as a VLAN netdevice with an IP address. Similarly for physical netdevices, the L3 object at which the counter is installed is the subport carrying untagged traffic. These are not "just counters". It is important that the user understands what is being counted. It would be incorrect to conflate these statistics with another existing statistics suite. To that end, this patch set introduces a statistics suite called "L3 stats". This label should make it easy to understand what is being counted, and to decide whether a given device can or cannot implement this suite for some type of netdevice. At the same time, the code is written to make future extensions easy, should a device pop up that can implement a different flavor of statistics suite (say L2, or an address-family-specific suite). For example, using a work-in-progress iproute2[1], to turn on and then list the counters on a VLAN netdevice: # ip stats set dev swp1.200 l3_stats on # ip stats show dev swp1.200 group offload subgroup l3_stats 56: swp1.200: group offload subgroup l3_stats on used on RX: bytes packets errors dropped missed mcast 0 0 0 0 0 0 TX: bytes packets errors dropped carrier collsns 0 0 0 0 0 0 The patchset progresses as follows: - Patch #1 is a cleanup. - In patch #2, remove the assumption that all LINK_OFFLOAD_XSTATS are dev-backed. The only attribute defined under the nest is currently IFLA_OFFLOAD_XSTATS_CPU_HIT. L3_STATS differs from CPU_HIT in that the driver that supplies the statistics is not the same as the driver that implements the netdevice. Make the code compatible with this in patch #2. - In patch #3, add the possibility to filter inside nests. The filter_mask field of RTM_GETSTATS header determines which top-level attributes should be included in the netlink response. This saves processing time by only including the bits that the user cares about instead of always dumping everything. This is doubly important for HW-backed statistics that would typically require a trip to the device to fetch the stats. In this patch, the UAPI is extended to allow filtering inside IFLA_STATS_LINK_OFFLOAD_XSTATS in particular, but the scheme is easily extensible to other nests as well. - In patch #4, propagate extack where we need it. In patch #5, make it possible to propagate errors from drivers to the user. - In patch #6, add the in-kernel APIs for keeping track of the new stats suite, and the notifiers that the core uses to communicate with the drivers. - In patch #7, add UAPI for obtaining the new stats suite. - In patch #8, add a new UAPI message, RTM_SETSTATS, which will carry the message to toggle the newly-added stats suite. In patch #9, add the toggle itself. At this point the core is ready for drivers to add support for the new stats suite. - In patches #10, #11 and #12, apply small tweaks to mlxsw code. - In patch #13, add support for L3 stats, which are realized as RIF counters. - Finally in patch #14, a selftest is added to the net/forwarding directory. Technically this is a HW-specific test, in that without a HW implementing the counters, it just will not pass. But devices that support L3 statistics at all are likely to be able to reuse this selftest, so it seems appropriate to put it in the general forwarding directory. We also have a netdevsim implementation, and a corresponding selftest that verifies specifically some of the core code. We intend to contribute these later. Interested parties can take a look at the raw code at [2]. [1] https://github.com/pmachata/iproute2/commits/soft_counters [2] https://github.com/pmachata/linux_mlxsw/commits/petrm_soft_counters_2 v2: - Patch #3: - Do not declare strict_start_type at the new policies, since they are used with nla_parse_nested() (sans _deprecated). - Use NLA_POLICY_NESTED to declare what the nest contents should be - Use NLA_POLICY_MASK instead of BITFIELD32 for the filtering attribute. - Patch #6: - s/monotonous/monotonic/ in commit message - Use a newly-added struct rtnl_hw_stats64 for stats transfer - Patch #7: - Use a newly-added struct rtnl_hw_stats64 for stats transfer - Patch #8: - Do not declare strict_start_type at the new policies, since they are used with nla_parse_nested() (sans _deprecated). - Patch #13: - Use a newly-added struct rtnl_hw_stats64 for stats transfer ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
alobakin
pushed a commit
that referenced
this pull request
Apr 11, 2022
As guest_irq is coming from KVM_IRQFD API call, it may trigger crash in svm_update_pi_irte() due to out-of-bounds: crash> bt PID: 22218 TASK: ffff951a6ad74980 CPU: 73 COMMAND: "vcpu8" #0 [ffffb1ba6707fa40] machine_kexec at ffffffff8565b397 #1 [ffffb1ba6707fa90] __crash_kexec at ffffffff85788a6d #2 [ffffb1ba6707fb58] crash_kexec at ffffffff8578995d #3 [ffffb1ba6707fb70] oops_end at ffffffff85623c0d #4 [ffffb1ba6707fb90] no_context at ffffffff856692c9 #5 [ffffb1ba6707fbf8] exc_page_fault at ffffffff85f95b51 #6 [ffffb1ba6707fc50] asm_exc_page_fault at ffffffff86000ace [exception RIP: svm_update_pi_irte+227] RIP: ffffffffc0761b53 RSP: ffffb1ba6707fd08 RFLAGS: 00010086 RAX: ffffb1ba6707fd78 RBX: ffffb1ba66d91000 RCX: 0000000000000001 RDX: 00003c803f63f1c0 RSI: 000000000000019a RDI: ffffb1ba66db2ab8 RBP: 000000000000019a R8: 0000000000000040 R9: ffff94ca41b82200 R10: ffffffffffffffcf R11: 0000000000000001 R12: 0000000000000001 R13: 0000000000000001 R14: ffffffffffffffcf R15: 000000000000005f ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #7 [ffffb1ba6707fdb8] kvm_irq_routing_update at ffffffffc09f19a1 [kvm] #8 [ffffb1ba6707fde0] kvm_set_irq_routing at ffffffffc09f2133 [kvm] #9 [ffffb1ba6707fe18] kvm_vm_ioctl at ffffffffc09ef544 [kvm] RIP: 00007f143c36488b RSP: 00007f143a4e04b8 RFLAGS: 00000246 RAX: ffffffffffffffda RBX: 00007f05780041d0 RCX: 00007f143c36488b RDX: 00007f05780041d0 RSI: 000000004008ae6a RDI: 0000000000000020 RBP: 00000000000004e8 R8: 0000000000000008 R9: 00007f05780041e0 R10: 00007f0578004560 R11: 0000000000000246 R12: 00000000000004e0 R13: 000000000000001a R14: 00007f1424001c60 R15: 00007f0578003bc0 ORIG_RAX: 0000000000000010 CS: 0033 SS: 002b Vmx have been fix this in commit 3a8b067 (KVM: VMX: Do not BUG() on out-of-bounds guest IRQ), so we can just copy source from that to fix this. Co-developed-by: Yi Liu <liu.yi24@zte.com.cn> Signed-off-by: Yi Liu <liu.yi24@zte.com.cn> Signed-off-by: Yi Wang <wang.yi59@zte.com.cn> Message-Id: <20220309113025.44469-1-wang.yi59@zte.com.cn> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
alobakin
pushed a commit
that referenced
this pull request
Apr 27, 2022
Andrii Nakryiko says: ==================== This patch set teaches libbpf to enhance BPF verifier log with human-readable and relevant information about failed CO-RE relocation. Patch #9 is the main one with the new logic. See relevant commit messages for some more details. All the other patches are either fixing various bugs detected while working on this feature, most prominently a bug with libbpf not handling CO-RE relocations for SEC("?...") programs, or are refactoring libbpf internals to allow for easier reuse of CO-RE relo lookup and formatting logic. ==================== Signed-off-by: Alexei Starovoitov <ast@kernel.org>
alobakin
pushed a commit
that referenced
this pull request
Apr 28, 2022
…e name Add prefix "lc#n" to thermal zones associated with the thermal objects found on line cards. For example thermal zone for module #9 located at line card #7 will have type: mlxsw-lc7-module9. And thermal zone for gearbox #3 located at line card #5 will have type: mlxsw-lc5-gearbox3. Signed-off-by: Vadim Pasternak <vadimp@nvidia.com> Reviewed-by: Jiri Pirko <jiri@nvidia.com> Signed-off-by: Ido Schimmel <idosch@nvidia.com> Signed-off-by: David S. Miller <davem@davemloft.net>
alobakin
pushed a commit
that referenced
this pull request
Apr 28, 2022
Ido Schimmel says: ==================== mlxsw: Preparations for line cards support Currently, mlxsw registers thermal zones as well as hwmon entries for objects such as transceiver modules and gearboxes. In upcoming modular systems, these objects are no longer found on the main board (i.e., slot 0), but on plug-able line cards. This patchset prepares mlxsw for such systems in terms of hwmon, thermal and cable access support. Patches #1-#3 gradually prepare mlxsw for transceiver modules access support for line cards by splitting some of the internal structures and some APIs. Patches #4-#5 gradually prepare mlxsw for hwmon support for line cards by splitting some of the internal structures and augmenting them with a slot index. Patches #6-#7 do the same for thermal zones. Patch #8 selects cooling device for binding to a thermal zone by exact name match to prevent binding to non-relevant devices. Patch #9 replaces internal define for thermal zone name length with a common define. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
alobakin
pushed a commit
that referenced
this pull request
Apr 28, 2022
…de-initialization Add callback functions for line card thermal area initialization and de-initialization. Each line card is associated with the relevant thermal area, which may contain thermal zones for cages and gearboxes found on this line card. The line card thermal initialization / de-initialization APIs are to be called when line card is set to active / inactive state by got_active() / got_inactive() callbacks from line card state machine. For example thermal zone for module #9 located at line card #7 will have type: mlxsw-lc7-module9. And thermal zone for gearbox #2 located at line card #5 will have type: mlxsw-lc5-gearbox2. Signed-off-by: Vadim Pasternak <vadimp@nvidia.com> Signed-off-by: Ido Schimmel <idosch@nvidia.com> Signed-off-by: David S. Miller <davem@davemloft.net>
alobakin
pushed a commit
that referenced
this pull request
Apr 28, 2022
…-initialization Add callback functions for line card 'hwmon' initialization and de-initialization. Each line card is associated with the relevant 'hwmon' device, which may contain thermal attributes for the cages and gearboxes found on this line card. The line card 'hwmon' initialization / de-initialization APIs are to be called when line card is set to active / inactive state by got_active() / got_inactive() callbacks from line card state machine. For example cage temperature for module #9 located at line card #7 will be exposed by utility 'sensors' like: linecard#07 front panel 009: +32.0C (crit = +70.0C, emerg = +80.0C) And temperature for gearbox #3 located at line card #5 will be exposed like: linecard#05 gearbox 003: +41.0C (highest = +41.0C) Signed-off-by: Vadim Pasternak <vadimp@nvidia.com> Signed-off-by: Ido Schimmel <idosch@nvidia.com> Signed-off-by: David S. Miller <davem@davemloft.net>
alobakin
pushed a commit
that referenced
this pull request
May 2, 2022
While handling PCI errors (AER flow) driver tries to disable NAPI [napi_disable()] after NAPI is deleted [__netif_napi_del()] which causes unexpected system hang/crash. System message log shows the following: ======================================= [ 3222.537510] EEH: Detected PCI bus error on PHB#384-PE#800000 [ 3222.537511] EEH: This PCI device has failed 2 times in the last hour and will be permanently disabled after 5 failures. [ 3222.537512] EEH: Notify device drivers to shutdown [ 3222.537513] EEH: Beginning: 'error_detected(IO frozen)' [ 3222.537514] EEH: PE#800000 (PCI 0384:80:00.0): Invoking bnx2x->error_detected(IO frozen) [ 3222.537516] bnx2x: [bnx2x_io_error_detected:14236(eth14)]IO error detected [ 3222.537650] EEH: PE#800000 (PCI 0384:80:00.0): bnx2x driver reports: 'need reset' [ 3222.537651] EEH: PE#800000 (PCI 0384:80:00.1): Invoking bnx2x->error_detected(IO frozen) [ 3222.537651] bnx2x: [bnx2x_io_error_detected:14236(eth13)]IO error detected [ 3222.537729] EEH: PE#800000 (PCI 0384:80:00.1): bnx2x driver reports: 'need reset' [ 3222.537729] EEH: Finished:'error_detected(IO frozen)' with aggregate recovery state:'need reset' [ 3222.537890] EEH: Collect temporary log [ 3222.583481] EEH: of node=0384:80:00.0 [ 3222.583519] EEH: PCI device/vendor: 168e14e4 [ 3222.583557] EEH: PCI cmd/status register: 00100140 [ 3222.583557] EEH: PCI-E capabilities and status follow: [ 3222.583744] EEH: PCI-E 00: 00020010 012c8da 00095d5e 00455c82 [ 3222.583892] EEH: PCI-E 10: 10820000 00000000 00000000 00000000 [ 3222.583893] EEH: PCI-E 20: 00000000 [ 3222.583893] EEH: PCI-E AER capability register set follows: [ 3222.584079] EEH: PCI-E AER 00: 13c10001 00000000 00000000 00062030 [ 3222.584230] EEH: PCI-E AER 10: 00002000 000031c0 000001e0 00000000 [ 3222.584378] EEH: PCI-E AER 20: 00000000 00000000 00000000 00000000 [ 3222.584416] EEH: PCI-E AER 30: 00000000 00000000 [ 3222.584416] EEH: of node=0384:80:00.1 [ 3222.584454] EEH: PCI device/vendor: 168e14e4 [ 3222.584491] EEH: PCI cmd/status register: 00100140 [ 3222.584492] EEH: PCI-E capabilities and status follow: [ 3222.584677] EEH: PCI-E 00: 00020010 012c8da 00095d5e 00455c82 [ 3222.584825] EEH: PCI-E 10: 10820000 00000000 00000000 00000000 [ 3222.584826] EEH: PCI-E 20: 00000000 [ 3222.584826] EEH: PCI-E AER capability register set follows: [ 3222.585011] EEH: PCI-E AER 00: 13c10001 00000000 00000000 00062030 [ 3222.585160] EEH: PCI-E AER 10: 00002000 000031c0 000001e0 00000000 [ 3222.585309] EEH: PCI-E AER 20: 00000000 00000000 00000000 00000000 [ 3222.585347] EEH: PCI-E AER 30: 00000000 00000000 [ 3222.586872] RTAS: event: 5, Type: Platform Error (224), Severity: 2 [ 3222.586873] EEH: Reset without hotplug activity [ 3224.762767] EEH: Beginning: 'slot_reset' [ 3224.762770] EEH: PE#800000 (PCI 0384:80:00.0): Invoking bnx2x->slot_reset() [ 3224.762771] bnx2x: [bnx2x_io_slot_reset:14271(eth14)]IO slot reset initializing... [ 3224.762887] bnx2x 0384:80:00.0: enabling device (0140 -> 0142) [ 3224.768157] bnx2x: [bnx2x_io_slot_reset:14287(eth14)]IO slot reset --> driver unload Uninterruptible tasks ===================== crash> ps | grep UN 213 2 11 c000000004c89e00 UN 0.0 0 0 [eehd] 215 2 0 c000000004c80000 UN 0.0 0 0 [kworker/0:2] 2196 1 28 c000000004504f00 UN 0.1 15936 11136 wickedd 4287 1 9 c00000020d076800 UN 0.0 4032 3008 agetty 4289 1 20 c00000020d056680 UN 0.0 7232 3840 agetty 32423 2 26 c00000020038c580 UN 0.0 0 0 [kworker/26:3] 32871 4241 27 c0000002609ddd00 UN 0.1 18624 11648 sshd 32920 10130 16 c00000027284a100 UN 0.1 48512 12608 sendmail 33092 32987 0 c000000205218b00 UN 0.1 48512 12608 sendmail 33154 4567 16 c000000260e51780 UN 0.1 48832 12864 pickup 33209 4241 36 c000000270cb6500 UN 0.1 18624 11712 sshd 33473 33283 0 c000000205211480 UN 0.1 48512 12672 sendmail 33531 4241 37 c00000023c902780 UN 0.1 18624 11648 sshd EEH handler hung while bnx2x sleeping and holding RTNL lock =========================================================== crash> bt 213 PID: 213 TASK: c000000004c89e00 CPU: 11 COMMAND: "eehd" #0 [c000000004d477e0] __schedule at c000000000c70808 #1 [c000000004d478b0] schedule at c000000000c70ee0 #2 [c000000004d478e0] schedule_timeout at c000000000c76dec #3 [c000000004d479c0] msleep at c0000000002120cc #4 [c000000004d479f0] napi_disable at c000000000a06448 ^^^^^^^^^^^^^^^^ #5 [c000000004d47a30] bnx2x_netif_stop at c0080000018dba94 [bnx2x] #6 [c000000004d47a60] bnx2x_io_slot_reset at c0080000018a551c [bnx2x] #7 [c000000004d47b20] eeh_report_reset at c00000000004c9bc #8 [c000000004d47b90] eeh_pe_report at c00000000004d1a8 #9 [c000000004d47c40] eeh_handle_normal_event at c00000000004da64 And the sleeping source code ============================ crash> dis -ls c000000000a06448 FILE: ../net/core/dev.c LINE: 6702 6697 { 6698 might_sleep(); 6699 set_bit(NAPI_STATE_DISABLE, &n->state); 6700 6701 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) * 6702 msleep(1); 6703 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6704 msleep(1); 6705 6706 hrtimer_cancel(&n->timer); 6707 6708 clear_bit(NAPI_STATE_DISABLE, &n->state); 6709 } EEH calls into bnx2x twice based on the system log above, first through bnx2x_io_error_detected() and then bnx2x_io_slot_reset(), and executes the following call chains: bnx2x_io_error_detected() +-> bnx2x_eeh_nic_unload() +-> bnx2x_del_all_napi() +-> __netif_napi_del() bnx2x_io_slot_reset() +-> bnx2x_netif_stop() +-> bnx2x_napi_disable() +->napi_disable() Fix this by correcting the sequence of NAPI APIs usage, that is delete the NAPI after disabling it. Fixes: 7fa6f34 ("bnx2x: AER revised") Reported-by: David Christensen <drc@linux.vnet.ibm.com> Tested-by: David Christensen <drc@linux.vnet.ibm.com> Signed-off-by: Manish Chopra <manishc@marvell.com> Signed-off-by: Ariel Elior <aelior@marvell.com> Link: https://lore.kernel.org/r/20220426153913.6966-1-manishc@marvell.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
alobakin
pushed a commit
that referenced
this pull request
May 13, 2022
Ido Schimmel says: ==================== mlxsw: A dedicated notifier block for router code Petr says: Currently all netdevice events are handled in the centralized notifier handler maintained by spectrum.c. Since a number of events are involving router code, spectrum.c needs to dispatch them to spectrum_router.c. The spectrum module therefore needs to know more about the router code than it should have, and there is are several API points through which the two modules communicate. In this patchset, move bulk of the router-related event handling to the router code. Some of the knowledge has to stay: spectrum.c cannot veto events that the router supports, and vice versa. But beyond that, the two can ignore each other's details, which leads to more focused and simpler code. As a side effect, this fixes L3 HW stats support on tunnel netdevices. The patch set progresses as follows: - In patch #1, change spectrum code to not bounce L3 enslavement, which the router code supports. - In patch #2, add a new do-nothing notifier block to the router code. - In patches #3-#6, move router-specific event handling to the router module. In patch #7, clean up a comment. - In patch #8, use the advantage that all router event handling is in the router code and clean up taking router lock. - mlxsw supports L3 HW stats on tunnels as of this patchset. Patches #9 and #10 therefore add a selftest for L3 HW stats support on tunnels. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
alobakin
pushed a commit
that referenced
this pull request
May 13, 2022
This fixes the following error caused by a race condition between phydev->adjust_link() and a MDIO transaction in the phy interrupt handler. The issue was reproduced with the ethernet FEC driver and a micrel KSZ9031 phy. [ 146.195696] fec 2188000.ethernet eth0: MDIO read timeout [ 146.201779] ------------[ cut here ]------------ [ 146.206671] WARNING: CPU: 0 PID: 571 at drivers/net/phy/phy.c:942 phy_error+0x24/0x6c [ 146.214744] Modules linked in: bnep imx_vdoa imx_sdma evbug [ 146.220640] CPU: 0 PID: 571 Comm: irq/128-2188000 Not tainted 5.18.0-rc3-00080-gd569e86915b7 #9 [ 146.229563] Hardware name: Freescale i.MX6 Quad/DualLite (Device Tree) [ 146.236257] unwind_backtrace from show_stack+0x10/0x14 [ 146.241640] show_stack from dump_stack_lvl+0x58/0x70 [ 146.246841] dump_stack_lvl from __warn+0xb4/0x24c [ 146.251772] __warn from warn_slowpath_fmt+0x5c/0xd4 [ 146.256873] warn_slowpath_fmt from phy_error+0x24/0x6c [ 146.262249] phy_error from kszphy_handle_interrupt+0x40/0x48 [ 146.268159] kszphy_handle_interrupt from irq_thread_fn+0x1c/0x78 [ 146.274417] irq_thread_fn from irq_thread+0xf0/0x1dc [ 146.279605] irq_thread from kthread+0xe4/0x104 [ 146.284267] kthread from ret_from_fork+0x14/0x28 [ 146.289164] Exception stack(0xe6fa1fb0 to 0xe6fa1ff8) [ 146.294448] 1fa0: 00000000 00000000 00000000 00000000 [ 146.302842] 1fc0: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 [ 146.311281] 1fe0: 00000000 00000000 00000000 00000000 00000013 00000000 [ 146.318262] irq event stamp: 12325 [ 146.321780] hardirqs last enabled at (12333): [<c01984c4>] __up_console_sem+0x50/0x60 [ 146.330013] hardirqs last disabled at (12342): [<c01984b0>] __up_console_sem+0x3c/0x60 [ 146.338259] softirqs last enabled at (12324): [<c01017f0>] __do_softirq+0x2c0/0x624 [ 146.346311] softirqs last disabled at (12319): [<c01300ac>] __irq_exit_rcu+0x138/0x178 [ 146.354447] ---[ end trace 0000000000000000 ]--- With the FEC driver phydev->adjust_link() calls fec_enet_adjust_link() calls fec_stop()/fec_restart() and both these function reset and temporary disable the FEC disrupting any MII transaction that could be happening at the same time. fec_enet_adjust_link() and phy_read() can be running at the same time when we have one additional interrupt before the phy_state_machine() is able to terminate. Thread 1 (phylib WQ) | Thread 2 (phy interrupt) | | phy_interrupt() <-- PHY IRQ | handle_interrupt() | phy_read() | phy_trigger_machine() | --> schedule phylib WQ | | phy_state_machine() | phy_check_link_status() | phy_link_change() | phydev->adjust_link() | fec_enet_adjust_link() | --> FEC reset | phy_interrupt() <-- PHY IRQ | phy_read() | Fix this by acquiring the phydev lock in phy_interrupt(). Link: https://lore.kernel.org/all/20220422152612.GA510015@francesco-nb.int.toradex.com/ Fixes: c974bdb ("net: phy: Use threaded IRQ, to allow IRQ from sleeping devices") cc: <stable@vger.kernel.org> Signed-off-by: Francesco Dolcini <francesco.dolcini@toradex.com> Reviewed-by: Andrew Lunn <andrew@lunn.ch> Link: https://lore.kernel.org/r/20220506060815.327382-1-francesco.dolcini@toradex.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
alobakin
pushed a commit
that referenced
this pull request
Jun 10, 2022
Send along the already-allocated fattr along with nfs4_fs_locations, and drop the memcpy of fattr. We end up growing two more allocations, but this fixes up a crash as: PID: 790 TASK: ffff88811b43c000 CPU: 0 COMMAND: "ls" #0 [ffffc90000857920] panic at ffffffff81b9bfde #1 [ffffc900008579c0] do_trap at ffffffff81023a9b #2 [ffffc90000857a10] do_error_trap at ffffffff81023b78 #3 [ffffc90000857a58] exc_stack_segment at ffffffff81be1f45 #4 [ffffc90000857a80] asm_exc_stack_segment at ffffffff81c009de #5 [ffffc90000857b08] nfs_lookup at ffffffffa0302322 [nfs] #6 [ffffc90000857b70] __lookup_slow at ffffffff813a4a5f #7 [ffffc90000857c60] walk_component at ffffffff813a86c4 #8 [ffffc90000857cb8] path_lookupat at ffffffff813a9553 #9 [ffffc90000857cf0] filename_lookup at ffffffff813ab86b Suggested-by: Trond Myklebust <trondmy@hammerspace.com> Fixes: 9558a00 ("NFS: Remove the label from the nfs4_lookup_res struct") Signed-off-by: Benjamin Coddington <bcodding@redhat.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
alobakin
pushed a commit
that referenced
this pull request
Aug 28, 2024
…rnel/git/netfilter/nf-next Pablo Neira Ayuso says: ==================== Netfilter updates for net-next The following batch contains Netfilter updates for net-next: Patch #1 fix checksum calculation in nfnetlink_queue with SCTP, segment GSO packet since skb_zerocopy() does not support GSO_BY_FRAGS, from Antonio Ojea. Patch #2 extend nfnetlink_queue coverage to handle SCTP packets, from Antonio Ojea. Patch #3 uses consume_skb() instead of kfree_skb() in nfnetlink, from Donald Hunter. Patch #4 adds a dedicate commit list for sets to speed up intra-transaction lookups, from Florian Westphal. Patch #5 skips removal of element from abort path for the pipapo backend, ditching the shadow copy of this datastructure is sufficient. Patch #6 moves nf_ct_netns_get() out of nf_conncount_init() to let users of conncoiunt decide when to enable conntrack, this is needed by openvswitch, from Xin Long. Patch #7 pass context to all nft_parse_register_load() in preparation for the next patch. Patches #8 and #9 reject loads from uninitialized registers from control plane to remove register initialization from datapath. From Florian Westphal. * tag 'nf-next-24-08-23' of git://git.kernel.org/pub/scm/linux/kernel/git/netfilter/nf-next: netfilter: nf_tables: don't initialize registers in nft_do_chain() netfilter: nf_tables: allow loads only when register is initialized netfilter: nf_tables: pass context structure to nft_parse_register_load netfilter: move nf_ct_netns_get out of nf_conncount_init netfilter: nf_tables: do not remove elements if set backend implements .abort netfilter: nf_tables: store new sets in dedicated list netfilter: nfnetlink: convert kfree_skb to consume_skb selftests: netfilter: nft_queue.sh: sctp coverage netfilter: nfnetlink_queue: unbreak SCTP traffic ==================== Link: https://patch.msgid.link/20240822221939.157858-1-pablo@netfilter.org Signed-off-by: Jakub Kicinski <kuba@kernel.org>
alobakin
pushed a commit
that referenced
this pull request
Aug 30, 2024
A sysfs reader can race with a device reset or removal, attempting to read device state when the device is not actually present. eg: [exception RIP: qed_get_current_link+17] #8 [ffffb9e4f2907c48] qede_get_link_ksettings at ffffffffc07a994a [qede] #9 [ffffb9e4f2907cd8] __rh_call_get_link_ksettings at ffffffff992b01a3 #10 [ffffb9e4f2907d38] __ethtool_get_link_ksettings at ffffffff992b04e4 #11 [ffffb9e4f2907d90] duplex_show at ffffffff99260300 #12 [ffffb9e4f2907e38] dev_attr_show at ffffffff9905a01c #13 [ffffb9e4f2907e50] sysfs_kf_seq_show at ffffffff98e0145b #14 [ffffb9e4f2907e68] seq_read at ffffffff98d902e3 #15 [ffffb9e4f2907ec8] vfs_read at ffffffff98d657d1 #16 [ffffb9e4f2907f00] ksys_read at ffffffff98d65c3f #17 [ffffb9e4f2907f38] do_syscall_64 at ffffffff98a052fb crash> struct net_device.state ffff9a9d21336000 state = 5, state 5 is __LINK_STATE_START (0b1) and __LINK_STATE_NOCARRIER (0b100). The device is not present, note lack of __LINK_STATE_PRESENT (0b10). This is the same sort of panic as observed in commit 4224cfd ("net-sysfs: add check for netdevice being present to speed_show"). There are many other callers of __ethtool_get_link_ksettings() which don't have a device presence check. Move this check into ethtool to protect all callers. Fixes: d519e17 ("net: export device speed and duplex via sysfs") Fixes: 4224cfd ("net-sysfs: add check for netdevice being present to speed_show") Signed-off-by: Jamie Bainbridge <jamie.bainbridge@gmail.com> Link: https://patch.msgid.link/8bae218864beaa44ed01628140475b9bf641c5b0.1724393671.git.jamie.bainbridge@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
alobakin
pushed a commit
that referenced
this pull request
Oct 30, 2024
On the node of an NFS client, some files saved in the mountpoint of the NFS server were copied to another location of the same NFS server. Accidentally, the nfs42_complete_copies() got a NULL-pointer dereference crash with the following syslog: [232064.838881] NFSv4: state recovery failed for open file nfs/pvc-12b5200d-cd0f-46a3-b9f0-af8f4fe0ef64.qcow2, error = -116 [232064.839360] NFSv4: state recovery failed for open file nfs/pvc-12b5200d-cd0f-46a3-b9f0-af8f4fe0ef64.qcow2, error = -116 [232066.588183] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000058 [232066.588586] Mem abort info: [232066.588701] ESR = 0x0000000096000007 [232066.588862] EC = 0x25: DABT (current EL), IL = 32 bits [232066.589084] SET = 0, FnV = 0 [232066.589216] EA = 0, S1PTW = 0 [232066.589340] FSC = 0x07: level 3 translation fault [232066.589559] Data abort info: [232066.589683] ISV = 0, ISS = 0x00000007 [232066.589842] CM = 0, WnR = 0 [232066.589967] user pgtable: 64k pages, 48-bit VAs, pgdp=00002000956ff400 [232066.590231] [0000000000000058] pgd=08001100ae100003, p4d=08001100ae100003, pud=08001100ae100003, pmd=08001100b3c00003, pte=0000000000000000 [232066.590757] Internal error: Oops: 96000007 [#1] SMP [232066.590958] Modules linked in: rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs ocfs2_dlmfs ocfs2_stack_o2cb ocfs2_dlm vhost_net vhost vhost_iotlb tap tun ipt_rpfilter xt_multiport ip_set_hash_ip ip_set_hash_net xfrm_interface xfrm6_tunnel tunnel4 tunnel6 esp4 ah4 wireguard libcurve25519_generic veth xt_addrtype xt_set nf_conntrack_netlink ip_set_hash_ipportnet ip_set_hash_ipportip ip_set_bitmap_port ip_set_hash_ipport dummy ip_set ip_vs_sh ip_vs_wrr ip_vs_rr ip_vs iptable_filter sch_ingress nfnetlink_cttimeout vport_gre ip_gre ip_tunnel gre vport_geneve geneve vport_vxlan vxlan ip6_udp_tunnel udp_tunnel openvswitch nf_conncount dm_round_robin dm_service_time dm_multipath xt_nat xt_MASQUERADE nft_chain_nat nf_nat xt_mark xt_conntrack xt_comment nft_compat nft_counter nf_tables nfnetlink ocfs2 ocfs2_nodemanager ocfs2_stackglue iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi ipmi_ssif nbd overlay 8021q garp mrp bonding tls rfkill sunrpc ext4 mbcache jbd2 [232066.591052] vfat fat cas_cache cas_disk ses enclosure scsi_transport_sas sg acpi_ipmi ipmi_si ipmi_devintf ipmi_msghandler ip_tables vfio_pci vfio_pci_core vfio_virqfd vfio_iommu_type1 vfio dm_mirror dm_region_hash dm_log dm_mod nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 br_netfilter bridge stp llc fuse xfs libcrc32c ast drm_vram_helper qla2xxx drm_kms_helper syscopyarea crct10dif_ce sysfillrect ghash_ce sysimgblt sha2_ce fb_sys_fops cec sha256_arm64 sha1_ce drm_ttm_helper ttm nvme_fc igb sbsa_gwdt nvme_fabrics drm nvme_core i2c_algo_bit i40e scsi_transport_fc megaraid_sas aes_neon_bs [232066.596953] CPU: 6 PID: 4124696 Comm: 10.253.166.125- Kdump: loaded Not tainted 5.15.131-9.cl9_ocfs2.aarch64 #1 [232066.597356] Hardware name: Great Wall .\x93\x8e...RF6260 V5/GWMSSE2GL1T, BIOS T656FBE_V3.0.18 2024-01-06 [232066.597721] pstate: 20400009 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [232066.598034] pc : nfs4_reclaim_open_state+0x220/0x800 [nfsv4] [232066.598327] lr : nfs4_reclaim_open_state+0x12c/0x800 [nfsv4] [232066.598595] sp : ffff8000f568fc70 [232066.598731] x29: ffff8000f568fc70 x28: 0000000000001000 x27: ffff21003db33000 [232066.599030] x26: ffff800005521ae0 x25: ffff0100f98fa3f0 x24: 0000000000000001 [232066.599319] x23: ffff800009920008 x22: ffff21003db33040 x21: ffff21003db33050 [232066.599628] x20: ffff410172fe9e40 x19: ffff410172fe9e00 x18: 0000000000000000 [232066.599914] x17: 0000000000000000 x16: 0000000000000004 x15: 0000000000000000 [232066.600195] x14: 0000000000000000 x13: ffff800008e685a8 x12: 00000000eac0c6e6 [232066.600498] x11: 0000000000000000 x10: 0000000000000008 x9 : ffff8000054e5828 [232066.600784] x8 : 00000000ffffffbf x7 : 0000000000000001 x6 : 000000000a9eb14a [232066.601062] x5 : 0000000000000000 x4 : ffff70ff8a14a800 x3 : 0000000000000058 [232066.601348] x2 : 0000000000000001 x1 : 54dce46366daa6c6 x0 : 0000000000000000 [232066.601636] Call trace: [232066.601749] nfs4_reclaim_open_state+0x220/0x800 [nfsv4] [232066.601998] nfs4_do_reclaim+0x1b8/0x28c [nfsv4] [232066.602218] nfs4_state_manager+0x928/0x10f0 [nfsv4] [232066.602455] nfs4_run_state_manager+0x78/0x1b0 [nfsv4] [232066.602690] kthread+0x110/0x114 [232066.602830] ret_from_fork+0x10/0x20 [232066.602985] Code: 1400000d f9403f20 f9402e61 91016003 (f9402c00) [232066.603284] SMP: stopping secondary CPUs [232066.606936] Starting crashdump kernel... [232066.607146] Bye! Analysing the vmcore, we know that nfs4_copy_state listed by destination nfs_server->ss_copies was added by the field copies in handle_async_copy(), and we found a waiting copy process with the stack as: PID: 3511963 TASK: ffff710028b47e00 CPU: 0 COMMAND: "cp" #0 [ffff8001116ef740] __switch_to at ffff8000081b92f4 #1 [ffff8001116ef760] __schedule at ffff800008dd0650 #2 [ffff8001116ef7c0] schedule at ffff800008dd0a00 #3 [ffff8001116ef7e0] schedule_timeout at ffff800008dd6aa0 #4 [ffff8001116ef860] __wait_for_common at ffff800008dd166c #5 [ffff8001116ef8e0] wait_for_completion_interruptible at ffff800008dd1898 #6 [ffff8001116ef8f0] handle_async_copy at ffff8000055142f4 [nfsv4] #7 [ffff8001116ef970] _nfs42_proc_copy at ffff8000055147c8 [nfsv4] #8 [ffff8001116efa80] nfs42_proc_copy at ffff800005514cf0 [nfsv4] #9 [ffff8001116efc50] __nfs4_copy_file_range.constprop.0 at ffff8000054ed694 [nfsv4] The NULL-pointer dereference was due to nfs42_complete_copies() listed the nfs_server->ss_copies by the field ss_copies of nfs4_copy_state. So the nfs4_copy_state address ffff0100f98fa3f0 was offset by 0x10 and the data accessed through this pointer was also incorrect. Generally, the ordered list nfs4_state_owner->so_states indicate open(O_RDWR) or open(O_WRITE) states are reclaimed firstly by nfs4_reclaim_open_state(). When destination state reclaim is failed with NFS_STATE_RECOVERY_FAILED and copies are not deleted in nfs_server->ss_copies, the source state may be passed to the nfs42_complete_copies() process earlier, resulting in this crash scene finally. To solve this issue, we add a list_head nfs_server->ss_src_copies for a server-to-server copy specially. Fixes: 0e65a32 ("NFS: handle source server reboot") Signed-off-by: Yanjun Zhang <zhangyanjun@cestc.cn> Reviewed-by: Trond Myklebust <trond.myklebust@hammerspace.com> Signed-off-by: Anna Schumaker <anna.schumaker@oracle.com>
alobakin
pushed a commit
that referenced
this pull request
Nov 4, 2024
There is a race between laundromat handling of revoked delegations and a client sending free_stateid operation. Laundromat thread finds that delegation has expired and needs to be revoked so it marks the delegation stid revoked and it puts it on a reaper list but then it unlock the state lock and the actual delegation revocation happens without the lock. Once the stid is marked revoked a racing free_stateid processing thread does the following (1) it calls list_del_init() which removes it from the reaper list and (2) frees the delegation stid structure. The laundromat thread ends up not calling the revoke_delegation() function for this particular delegation but that means it will no release the lock lease that exists on the file. Now, a new open for this file comes in and ends up finding that lease list isn't empty and calls nfsd_breaker_owns_lease() which ends up trying to derefence a freed delegation stateid. Leading to the followint use-after-free KASAN warning: kernel: ================================================================== kernel: BUG: KASAN: slab-use-after-free in nfsd_breaker_owns_lease+0x140/0x160 [nfsd] kernel: Read of size 8 at addr ffff0000e73cd0c8 by task nfsd/6205 kernel: kernel: CPU: 2 UID: 0 PID: 6205 Comm: nfsd Kdump: loaded Not tainted 6.11.0-rc7+ #9 kernel: Hardware name: Apple Inc. Apple Virtualization Generic Platform, BIOS 2069.0.0.0.0 08/03/2024 kernel: Call trace: kernel: dump_backtrace+0x98/0x120 kernel: show_stack+0x1c/0x30 kernel: dump_stack_lvl+0x80/0xe8 kernel: print_address_description.constprop.0+0x84/0x390 kernel: print_report+0xa4/0x268 kernel: kasan_report+0xb4/0xf8 kernel: __asan_report_load8_noabort+0x1c/0x28 kernel: nfsd_breaker_owns_lease+0x140/0x160 [nfsd] kernel: nfsd_file_do_acquire+0xb3c/0x11d0 [nfsd] kernel: nfsd_file_acquire_opened+0x84/0x110 [nfsd] kernel: nfs4_get_vfs_file+0x634/0x958 [nfsd] kernel: nfsd4_process_open2+0xa40/0x1a40 [nfsd] kernel: nfsd4_open+0xa08/0xe80 [nfsd] kernel: nfsd4_proc_compound+0xb8c/0x2130 [nfsd] kernel: nfsd_dispatch+0x22c/0x718 [nfsd] kernel: svc_process_common+0x8e8/0x1960 [sunrpc] kernel: svc_process+0x3d4/0x7e0 [sunrpc] kernel: svc_handle_xprt+0x828/0xe10 [sunrpc] kernel: svc_recv+0x2cc/0x6a8 [sunrpc] kernel: nfsd+0x270/0x400 [nfsd] kernel: kthread+0x288/0x310 kernel: ret_from_fork+0x10/0x20 This patch proposes a fixed that's based on adding 2 new additional stid's sc_status values that help coordinate between the laundromat and other operations (nfsd4_free_stateid() and nfsd4_delegreturn()). First to make sure, that once the stid is marked revoked, it is not removed by the nfsd4_free_stateid(), the laundromat take a reference on the stateid. Then, coordinating whether the stid has been put on the cl_revoked list or we are processing FREE_STATEID and need to make sure to remove it from the list, each check that state and act accordingly. If laundromat has added to the cl_revoke list before the arrival of FREE_STATEID, then nfsd4_free_stateid() knows to remove it from the list. If nfsd4_free_stateid() finds that operations arrived before laundromat has placed it on cl_revoke list, it marks the state freed and then laundromat will no longer add it to the list. Also, for nfsd4_delegreturn() when looking for the specified stid, we need to access stid that are marked removed or freeable, it means the laundromat has started processing it but hasn't finished and this delegreturn needs to return nfserr_deleg_revoked and not nfserr_bad_stateid. The latter will not trigger a FREE_STATEID and the lack of it will leave this stid on the cl_revoked list indefinitely. Fixes: 2d4a532 ("nfsd: ensure that clp->cl_revoked list is protected by clp->cl_lock") CC: stable@vger.kernel.org Signed-off-by: Olga Kornievskaia <okorniev@redhat.com> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
alobakin
pushed a commit
that referenced
this pull request
Nov 4, 2024
Daniel Machon says: ==================== net: sparx5: add support for lan969x switch device == Description: This series is the second of a multi-part series, that prepares and adds support for the new lan969x switch driver. The upstreaming efforts is split into multiple series (might change a bit as we go along): 1) Prepare the Sparx5 driver for lan969x (merged) --> 2) add support lan969x (same basic features as Sparx5 provides excl. FDMA and VCAP). 3) Add support for lan969x VCAP, FDMA and RGMII == Lan969x in short: The lan969x Ethernet switch family [1] provides a rich set of switching features and port configurations (up to 30 ports) from 10Mbps to 10Gbps, with support for RGMII, SGMII, QSGMII, USGMII, and USXGMII, ideal for industrial & process automation infrastructure applications, transport, grid automation, power substation automation, and ring & intra-ring topologies. The LAN969x family is hardware and software compatible and scalable supporting 46Gbps to 102Gbps switch bandwidths. == Preparing Sparx5 for lan969x: The main preparation work for lan969x has already been merged [1]. After this series is applied, lan969x will have the same functionality as Sparx5, except for VCAP and FDMA support. QoS features that requires the VCAP (e.g. PSFP, port mirroring) will obviously not work until VCAP support is added later. == Patch breakdown: Patch #1-#4 do some preparation work for lan969x Patch #5 adds new registers required by lan969x Patch #6 adds initial match data for all lan969x targets Patch #7 defines the lan969x register differences Patch #8 adds lan969x constants to match data Patch #9 adds some lan969x ops in bulk Patch #10 adds PTP function to ops Patch #11 adds lan969x_calendar.c for calculating the calendar Patch #12 makes additional use of the is_sparx5() macro to branch out in certain places. Patch #13 documents lan969x in the dt-bindings Patch #14 adds lan969x compatible string to sparx5 driver Patch #15 introduces new concept of per-target features [1] https://lore.kernel.org/netdev/20241004-b4-sparx5-lan969x-switch-driver-v2-0-d3290f581663@microchip.com/ v1: https://lore.kernel.org/20241021-sparx5-lan969x-switch-driver-2-v1-0-c8c49ef21e0f@microchip.com ==================== Link: https://patch.msgid.link/20241024-sparx5-lan969x-switch-driver-2-v2-0-a0b5fae88a0f@microchip.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
alobakin
pushed a commit
that referenced
this pull request
Dec 11, 2024
Petr Machata says: ==================== vxlan: Support user-defined reserved bits Currently the VXLAN header validation works by vxlan_rcv() going feature by feature, each feature clearing the bits that it consumes. If anything is left unparsed at the end, the packet is rejected. Unfortunately there are machines out there that send VXLAN packets with reserved bits set, even if they are configured to not use the corresponding features. One such report is here[1], and we have heard similar complaints from our customers as well. This patchset adds an attribute that makes it configurable which bits the user wishes to tolerate and which they consider reserved. This was recommended in [1] as well. A knob like that inevitably allows users to set as reserved bits that are in fact required for the features enabled by the netdevice, such as GPE. This is detected, and such configurations are rejected. In patches #1..#7, the reserved bits validation code is gradually moved away from the unparsed approach described above, to one where a given set of valid bits is precomputed and then the packet is validated against that. In patch #8, this precomputed set is made configurable through a new attribute IFLA_VXLAN_RESERVED_BITS. Patches #9 and #10 massage the testsuite a bit, so that patch #11 can introduce a selftest for the resreved bits feature. The corresponding iproute2 support is available in [2]. [1] https://lore.kernel.org/netdev/db8b9e19-ad75-44d3-bfb2-46590d426ff5@proxmox.com/ [2] https://github.com/pmachata/iproute2/commits/vxlan_reserved_bits/ ==================== Link: https://patch.msgid.link/cover.1733412063.git.petrm@nvidia.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
alobakin
pushed a commit
that referenced
this pull request
Dec 13, 2024
Kernel will hang on destroy admin_q while we create ctrl failed, such as following calltrace: PID: 23644 TASK: ff2d52b40f439fc0 CPU: 2 COMMAND: "nvme" #0 [ff61d23de260fb78] __schedule at ffffffff8323bc15 #1 [ff61d23de260fc08] schedule at ffffffff8323c014 #2 [ff61d23de260fc28] blk_mq_freeze_queue_wait at ffffffff82a3dba1 #3 [ff61d23de260fc78] blk_freeze_queue at ffffffff82a4113a #4 [ff61d23de260fc90] blk_cleanup_queue at ffffffff82a33006 #5 [ff61d23de260fcb0] nvme_rdma_destroy_admin_queue at ffffffffc12686ce #6 [ff61d23de260fcc8] nvme_rdma_setup_ctrl at ffffffffc1268ced #7 [ff61d23de260fd28] nvme_rdma_create_ctrl at ffffffffc126919b #8 [ff61d23de260fd68] nvmf_dev_write at ffffffffc024f362 #9 [ff61d23de260fe38] vfs_write at ffffffff827d5f25 RIP: 00007fda7891d574 RSP: 00007ffe2ef06958 RFLAGS: 00000202 RAX: ffffffffffffffda RBX: 000055e8122a4d90 RCX: 00007fda7891d574 RDX: 000000000000012b RSI: 000055e8122a4d90 RDI: 0000000000000004 RBP: 00007ffe2ef079c0 R8: 000000000000012b R9: 000055e8122a4d90 R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000004 R13: 000055e8122923c0 R14: 000000000000012b R15: 00007fda78a54500 ORIG_RAX: 0000000000000001 CS: 0033 SS: 002b This due to we have quiesced admi_q before cancel requests, but forgot to unquiesce before destroy it, as a result we fail to drain the pending requests, and hang on blk_mq_freeze_queue_wait() forever. Here try to reuse nvme_rdma_teardown_admin_queue() to fix this issue and simplify the code. Fixes: 958dc1d ("nvme-rdma: add clean action for failed reconnection") Reported-by: Yingfu.zhou <yingfu.zhou@shopee.com> Signed-off-by: Chunguang.xu <chunguang.xu@shopee.com> Signed-off-by: Yue.zhao <yue.zhao@shopee.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Signed-off-by: Keith Busch <kbusch@kernel.org>
alobakin
pushed a commit
that referenced
this pull request
Dec 13, 2024
Hou Tao says: ==================== This patch set fixes several issues for LPM trie. These issues were found during adding new test cases or were reported by syzbot. The patch set is structured as follows: Patch #1~#2 are clean-ups for lpm_trie_update_elem(). Patch #3 handles BPF_EXIST and BPF_NOEXIST correctly for LPM trie. Patch #4 fixes the accounting of n_entries when doing in-place update. Patch #5 fixes the exact match condition in trie_get_next_key() and it may skip keys when the passed key is not found in the map. Patch #6~#7 switch from kmalloc() to bpf memory allocator for LPM trie to fix several lock order warnings reported by syzbot. It also enables raw_spinlock_t for LPM trie again. After these changes, the LPM trie will be closer to being usable in any context (though the reentrance check of trie->lock is still missing, but it is on my todo list). Patch #8: move test_lpm_map to map_tests to make it run regularly. Patch #9: add test cases for the issues fixed by patch #3~#5. Please see individual patches for more details. Comments are always welcome. Change Log: v3: * patch #2: remove the unnecessary NULL-init for im_node * patch #6: alloc the leaf node before disabling IRQ to low the possibility of -ENOMEM when leaf_size is large; Free these nodes outside the trie lock (Suggested by Alexei) * collect review and ack tags (Thanks for Toke & Daniel) v2: https://lore.kernel.org/bpf/20241127004641.1118269-1-houtao@huaweicloud.com/ * collect review tags (Thanks for Toke) * drop "Add bpf_mem_cache_is_mergeable() helper" patch * patch #3~#4: add fix tag * patch #4: rename the helper to trie_check_add_elem() and increase n_entries in it. * patch #6: use one bpf mem allocator and update commit message to clarify that using bpf mem allocator is more appropriate. * patch #7: update commit message to add the possible max running time for update operation. * patch #9: update commit message to specify the purpose of these test cases. v1: https://lore.kernel.org/bpf/20241118010808.2243555-1-houtao@huaweicloud.com/ ==================== Link: https://lore.kernel.org/all/20241206110622.1161752-1-houtao@huaweicloud.com/ Signed-off-by: Alexei Starovoitov <ast@kernel.org>
alobakin
pushed a commit
that referenced
this pull request
Dec 20, 2024
Its used from trace__run(), for the 'perf trace' live mode, i.e. its strace-like, non-perf.data file processing mode, the most common one. The trace__run() function will set trace->host using machine__new_host() that is supposed to give a machine instance representing the running machine, and since we'll use perf_env__arch_strerrno() to get the right errno -> string table, we need to use machine->env, so initialize it in machine__new_host(). Before the patch: (gdb) run trace --errno-summary -a sleep 1 <SNIP> Summary of events: gvfs-afc-volume (3187), 2 events, 0.0% syscall calls errors total min avg max stddev (msec) (msec) (msec) (msec) (%) --------------- -------- ------ -------- --------- --------- --------- ------ pselect6 1 0 0.000 0.000 0.000 0.000 0.00% GUsbEventThread (3519), 2 events, 0.0% syscall calls errors total min avg max stddev (msec) (msec) (msec) (msec) (%) --------------- -------- ------ -------- --------- --------- --------- ------ poll 1 0 0.000 0.000 0.000 0.000 0.00% <SNIP> Program received signal SIGSEGV, Segmentation fault. 0x00000000005caba0 in perf_env__arch_strerrno (env=0x0, err=110) at util/env.c:478 478 if (env->arch_strerrno == NULL) (gdb) bt #0 0x00000000005caba0 in perf_env__arch_strerrno (env=0x0, err=110) at util/env.c:478 #1 0x00000000004b75d2 in thread__dump_stats (ttrace=0x14f58f0, trace=0x7fffffffa5b0, fp=0x7ffff6ff74e0 <_IO_2_1_stderr_>) at builtin-trace.c:4673 #2 0x00000000004b78bf in trace__fprintf_thread (fp=0x7ffff6ff74e0 <_IO_2_1_stderr_>, thread=0x10fa0b0, trace=0x7fffffffa5b0) at builtin-trace.c:4708 #3 0x00000000004b7ad9 in trace__fprintf_thread_summary (trace=0x7fffffffa5b0, fp=0x7ffff6ff74e0 <_IO_2_1_stderr_>) at builtin-trace.c:4747 #4 0x00000000004b656e in trace__run (trace=0x7fffffffa5b0, argc=2, argv=0x7fffffffde60) at builtin-trace.c:4456 #5 0x00000000004ba43e in cmd_trace (argc=2, argv=0x7fffffffde60) at builtin-trace.c:5487 #6 0x00000000004c0414 in run_builtin (p=0xec3068 <commands+648>, argc=5, argv=0x7fffffffde60) at perf.c:351 #7 0x00000000004c06bb in handle_internal_command (argc=5, argv=0x7fffffffde60) at perf.c:404 #8 0x00000000004c0814 in run_argv (argcp=0x7fffffffdc4c, argv=0x7fffffffdc40) at perf.c:448 #9 0x00000000004c0b5d in main (argc=5, argv=0x7fffffffde60) at perf.c:560 (gdb) After: root@number:~# perf trace -a --errno-summary sleep 1 <SNIP> pw-data-loop (2685), 1410 events, 16.0% syscall calls errors total min avg max stddev (msec) (msec) (msec) (msec) (%) --------------- -------- ------ -------- --------- --------- --------- ------ epoll_wait 188 0 983.428 0.000 5.231 15.595 8.68% ioctl 94 0 0.811 0.004 0.009 0.016 2.82% read 188 0 0.322 0.001 0.002 0.006 5.15% write 141 0 0.280 0.001 0.002 0.018 8.39% timerfd_settime 94 0 0.138 0.001 0.001 0.007 6.47% gnome-control-c (179406), 1848 events, 20.9% syscall calls errors total min avg max stddev (msec) (msec) (msec) (msec) (%) --------------- -------- ------ -------- --------- --------- --------- ------ poll 222 0 959.577 0.000 4.322 21.414 11.40% recvmsg 150 0 0.539 0.001 0.004 0.013 5.12% write 300 0 0.442 0.001 0.001 0.007 3.29% read 150 0 0.183 0.001 0.001 0.009 5.53% getpid 102 0 0.101 0.000 0.001 0.008 7.82% root@number:~# Fixes: 54373b5 ("perf env: Introduce perf_env__arch_strerrno()") Reported-by: Veronika Molnarova <vmolnaro@redhat.com> Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Veronika Molnarova <vmolnaro@redhat.com> Acked-by: Michael Petlan <mpetlan@redhat.com> Tested-by: Michael Petlan <mpetlan@redhat.com> Link: https://lore.kernel.org/r/Z0XffUgNSv_9OjOi@x1 Signed-off-by: Namhyung Kim <namhyung@kernel.org>
alobakin
pushed a commit
that referenced
this pull request
Dec 20, 2024
Ido Schimmel says: ==================== net: fib_rules: Add flow label selector support In some deployments users would like to encode path information into certain bits of the IPv6 flow label, the UDP source port and the DSCP and use this information to route packets accordingly. Redirecting traffic to a routing table based on the flow label is not currently possible with Linux as FIB rules cannot match on it despite the flow label being available in the IPv6 flow key. This patchset extends FIB rules to match on the flow label with a mask. Future patches will add mask attributes to L4 ports and DSCP matches. Patches #1-#5 gradually extend FIB rules to match on the flow label. Patches #6-#7 allow user space to specify a flow label in route get requests. This is useful for both debugging and testing. Patch #8 adjusts the fib6_table_lookup tracepoint to print the flow label to the trace buffer for better observability. Patch #9 extends the FIB rule selftest with flow label test cases while utilizing the route get functionality from patch #6. ==================== Link: https://patch.msgid.link/20241216171201.274644-1-idosch@nvidia.com Signed-off-by: Paolo Abeni <pabeni@redhat.com>
alobakin
pushed a commit
that referenced
this pull request
Dec 24, 2024
Daniel Machon says: ==================== net: lan969x: add RGMII support == Description: This series is the fourth of a multi-part series, that prepares and adds support for the new lan969x switch driver. The upstreaming efforts is split into multiple series (might change a bit as we go along): 1) Prepare the Sparx5 driver for lan969x (merged) 2) Add support for lan969x (same basic features as Sparx5 provides excl. FDMA and VCAP, merged). 3) Add lan969x VCAP functionality (merged). --> 4) Add RGMII support. 5) Add FDMA support. == RGMII support: The lan969x switch device includes two RGMII port interfaces (port 28 and 29) supporting data speeds of 1 Gbps, 100 Mbps and 10 Mbps. == Patch breakdown: Patch #1 does some preparation work. Patch #2 adds new function: is_port_rgmii() to the match data ops. Patch #3 uses the is_port_rgmii() in a number of places. Patch #4 makes sure that we do not configure an RGMII device as a low-speed device, when doing a port config. Patch #5 makes sure we only return the PCS if the port mode requires it. Patch #6 adds checks for RGMII PHY modes in sparx5_verify_speeds(). Patch #7 adds registers required to configure RGMII. Patch #8 adds RGMII implementation. Patch #9 documents RGMII delays in the dt-bindings. Details are in the commit description of the individual patches v4: https://lore.kernel.org/20241213-sparx5-lan969x-switch-driver-4-v4-0-d1a72c9c4714@microchip.com v3: https://lore.kernel.org/20241118-sparx5-lan969x-switch-driver-4-v3-0-3cefee5e7e3a@microchip.com v2: https://lore.kernel.org/20241113-sparx5-lan969x-switch-driver-4-v2-0-0db98ac096d1@microchip.com v1: https://lore.kernel.org/20241106-sparx5-lan969x-switch-driver-4-v1-0-f7f7316436bd@microchip.com ==================== Link: https://patch.msgid.link/20241220-sparx5-lan969x-switch-driver-4-v5-0-fa8ba5dff732@microchip.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
alobakin
pushed a commit
that referenced
this pull request
Jan 7, 2025
Chase reports that their tester complaints about a locking context mismatch: ============================= [ BUG: Invalid wait context ] 6.13.0-rc1-gf137f14b7ccb-dirty #9 Not tainted ----------------------------- syz.1.25198/182604 is trying to lock: ffff88805e66a358 (&ctx->timeout_lock){-.-.}-{3:3}, at: spin_lock_irq include/linux/spinlock.h:376 [inline] ffff88805e66a358 (&ctx->timeout_lock){-.-.}-{3:3}, at: io_match_task_safe io_uring/io_uring.c:218 [inline] ffff88805e66a358 (&ctx->timeout_lock){-.-.}-{3:3}, at: io_match_task_safe+0x187/0x250 io_uring/io_uring.c:204 other info that might help us debug this: context-{5:5} 1 lock held by syz.1.25198/182604: #0: ffff88802b7d48c0 (&acct->lock){+.+.}-{2:2}, at: io_acct_cancel_pending_work+0x2d/0x6b0 io_uring/io-wq.c:1049 stack backtrace: CPU: 0 UID: 0 PID: 182604 Comm: syz.1.25198 Not tainted 6.13.0-rc1-gf137f14b7ccb-dirty #9 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x82/0xd0 lib/dump_stack.c:120 print_lock_invalid_wait_context kernel/locking/lockdep.c:4826 [inline] check_wait_context kernel/locking/lockdep.c:4898 [inline] __lock_acquire+0x883/0x3c80 kernel/locking/lockdep.c:5176 lock_acquire.part.0+0x11b/0x370 kernel/locking/lockdep.c:5849 __raw_spin_lock_irq include/linux/spinlock_api_smp.h:119 [inline] _raw_spin_lock_irq+0x36/0x50 kernel/locking/spinlock.c:170 spin_lock_irq include/linux/spinlock.h:376 [inline] io_match_task_safe io_uring/io_uring.c:218 [inline] io_match_task_safe+0x187/0x250 io_uring/io_uring.c:204 io_acct_cancel_pending_work+0xb8/0x6b0 io_uring/io-wq.c:1052 io_wq_cancel_pending_work io_uring/io-wq.c:1074 [inline] io_wq_cancel_cb+0xb0/0x390 io_uring/io-wq.c:1112 io_uring_try_cancel_requests+0x15e/0xd70 io_uring/io_uring.c:3062 io_uring_cancel_generic+0x6ec/0x8c0 io_uring/io_uring.c:3140 io_uring_files_cancel include/linux/io_uring.h:20 [inline] do_exit+0x494/0x27a0 kernel/exit.c:894 do_group_exit+0xb3/0x250 kernel/exit.c:1087 get_signal+0x1d77/0x1ef0 kernel/signal.c:3017 arch_do_signal_or_restart+0x79/0x5b0 arch/x86/kernel/signal.c:337 exit_to_user_mode_loop kernel/entry/common.c:111 [inline] exit_to_user_mode_prepare include/linux/entry-common.h:329 [inline] __syscall_exit_to_user_mode_work kernel/entry/common.c:207 [inline] syscall_exit_to_user_mode+0x150/0x2a0 kernel/entry/common.c:218 do_syscall_64+0xd8/0x250 arch/x86/entry/common.c:89 entry_SYSCALL_64_after_hwframe+0x77/0x7f which is because io_uring has ctx->timeout_lock nesting inside the io-wq acct lock, the latter of which is used from inside the scheduler and hence is a raw spinlock, while the former is a "normal" spinlock and can hence be sleeping on PREEMPT_RT. Change ctx->timeout_lock to be a raw spinlock to solve this nesting dependency on PREEMPT_RT=y. Reported-by: chase xd <sl1589472800@gmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
alobakin
pushed a commit
that referenced
this pull request
Jan 10, 2025
…le_direct_reclaim() The task sometimes continues looping in throttle_direct_reclaim() because allow_direct_reclaim(pgdat) keeps returning false. #0 [ffff80002cb6f8d0] __switch_to at ffff8000080095ac #1 [ffff80002cb6f900] __schedule at ffff800008abbd1c #2 [ffff80002cb6f990] schedule at ffff800008abc50c #3 [ffff80002cb6f9b0] throttle_direct_reclaim at ffff800008273550 #4 [ffff80002cb6fa20] try_to_free_pages at ffff800008277b68 #5 [ffff80002cb6fae0] __alloc_pages_nodemask at ffff8000082c4660 #6 [ffff80002cb6fc50] alloc_pages_vma at ffff8000082e4a98 #7 [ffff80002cb6fca0] do_anonymous_page at ffff80000829f5a8 #8 [ffff80002cb6fce0] __handle_mm_fault at ffff8000082a5974 #9 [ffff80002cb6fd90] handle_mm_fault at ffff8000082a5bd4 At this point, the pgdat contains the following two zones: NODE: 4 ZONE: 0 ADDR: ffff00817fffe540 NAME: "DMA32" SIZE: 20480 MIN/LOW/HIGH: 11/28/45 VM_STAT: NR_FREE_PAGES: 359 NR_ZONE_INACTIVE_ANON: 18813 NR_ZONE_ACTIVE_ANON: 0 NR_ZONE_INACTIVE_FILE: 50 NR_ZONE_ACTIVE_FILE: 0 NR_ZONE_UNEVICTABLE: 0 NR_ZONE_WRITE_PENDING: 0 NR_MLOCK: 0 NR_BOUNCE: 0 NR_ZSPAGES: 0 NR_FREE_CMA_PAGES: 0 NODE: 4 ZONE: 1 ADDR: ffff00817fffec00 NAME: "Normal" SIZE: 8454144 PRESENT: 98304 MIN/LOW/HIGH: 68/166/264 VM_STAT: NR_FREE_PAGES: 146 NR_ZONE_INACTIVE_ANON: 94668 NR_ZONE_ACTIVE_ANON: 3 NR_ZONE_INACTIVE_FILE: 735 NR_ZONE_ACTIVE_FILE: 78 NR_ZONE_UNEVICTABLE: 0 NR_ZONE_WRITE_PENDING: 0 NR_MLOCK: 0 NR_BOUNCE: 0 NR_ZSPAGES: 0 NR_FREE_CMA_PAGES: 0 In allow_direct_reclaim(), while processing ZONE_DMA32, the sum of inactive/active file-backed pages calculated in zone_reclaimable_pages() based on the result of zone_page_state_snapshot() is zero. Additionally, since this system lacks swap, the calculation of inactive/ active anonymous pages is skipped. crash> p nr_swap_pages nr_swap_pages = $1937 = { counter = 0 } As a result, ZONE_DMA32 is deemed unreclaimable and skipped, moving on to the processing of the next zone, ZONE_NORMAL, despite ZONE_DMA32 having free pages significantly exceeding the high watermark. The problem is that the pgdat->kswapd_failures hasn't been incremented. crash> px ((struct pglist_data *) 0xffff00817fffe540)->kswapd_failures $1935 = 0x0 This is because the node deemed balanced. The node balancing logic in balance_pgdat() evaluates all zones collectively. If one or more zones (e.g., ZONE_DMA32) have enough free pages to meet their watermarks, the entire node is deemed balanced. This causes balance_pgdat() to exit early before incrementing the kswapd_failures, as it considers the overall memory state acceptable, even though some zones (like ZONE_NORMAL) remain under significant pressure. The patch ensures that zone_reclaimable_pages() includes free pages (NR_FREE_PAGES) in its calculation when no other reclaimable pages are available (e.g., file-backed or anonymous pages). This change prevents zones like ZONE_DMA32, which have sufficient free pages, from being mistakenly deemed unreclaimable. By doing so, the patch ensures proper node balancing, avoids masking pressure on other zones like ZONE_NORMAL, and prevents infinite loops in throttle_direct_reclaim() caused by allow_direct_reclaim(pgdat) repeatedly returning false. The kernel hangs due to a task stuck in throttle_direct_reclaim(), caused by a node being incorrectly deemed balanced despite pressure in certain zones, such as ZONE_NORMAL. This issue arises from zone_reclaimable_pages() returning 0 for zones without reclaimable file- backed or anonymous pages, causing zones like ZONE_DMA32 with sufficient free pages to be skipped. The lack of swap or reclaimable pages results in ZONE_DMA32 being ignored during reclaim, masking pressure in other zones. Consequently, pgdat->kswapd_failures remains 0 in balance_pgdat(), preventing fallback mechanisms in allow_direct_reclaim() from being triggered, leading to an infinite loop in throttle_direct_reclaim(). This patch modifies zone_reclaimable_pages() to account for free pages (NR_FREE_PAGES) when no other reclaimable pages exist. This ensures zones with sufficient free pages are not skipped, enabling proper balancing and reclaim behavior. [akpm@linux-foundation.org: coding-style cleanups] Link: https://lkml.kernel.org/r/20241130164346.436469-1-snishika@redhat.com Link: https://lkml.kernel.org/r/20241130161236.433747-2-snishika@redhat.com Fixes: 5a1c84b ("mm: remove reclaim and compaction retry approximations") Signed-off-by: Seiji Nishikawa <snishika@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
alobakin
pushed a commit
that referenced
this pull request
Feb 5, 2025
libtraceevent parses and returns an array of argument fields, sometimes larger than RAW_SYSCALL_ARGS_NUM (6) because it includes "__syscall_nr", idx will traverse to index 6 (7th element) whereas sc->fmt->arg holds 6 elements max, creating an out-of-bounds access. This runtime error is found by UBsan. The error message: $ sudo UBSAN_OPTIONS=print_stacktrace=1 ./perf trace -a --max-events=1 builtin-trace.c:1966:35: runtime error: index 6 out of bounds for type 'syscall_arg_fmt [6]' #0 0x5c04956be5fe in syscall__alloc_arg_fmts /home/howard/hw/linux-perf/tools/perf/builtin-trace.c:1966 #1 0x5c04956c0510 in trace__read_syscall_info /home/howard/hw/linux-perf/tools/perf/builtin-trace.c:2110 #2 0x5c04956c372b in trace__syscall_info /home/howard/hw/linux-perf/tools/perf/builtin-trace.c:2436 #3 0x5c04956d2f39 in trace__init_syscalls_bpf_prog_array_maps /home/howard/hw/linux-perf/tools/perf/builtin-trace.c:3897 #4 0x5c04956d6d25 in trace__run /home/howard/hw/linux-perf/tools/perf/builtin-trace.c:4335 #5 0x5c04956e112e in cmd_trace /home/howard/hw/linux-perf/tools/perf/builtin-trace.c:5502 #6 0x5c04956eda7d in run_builtin /home/howard/hw/linux-perf/tools/perf/perf.c:351 #7 0x5c04956ee0a8 in handle_internal_command /home/howard/hw/linux-perf/tools/perf/perf.c:404 #8 0x5c04956ee37f in run_argv /home/howard/hw/linux-perf/tools/perf/perf.c:448 #9 0x5c04956ee8e9 in main /home/howard/hw/linux-perf/tools/perf/perf.c:556 #10 0x79eb3622a3b7 in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58 #11 0x79eb3622a47a in __libc_start_main_impl ../csu/libc-start.c:360 #12 0x5c04955422d4 in _start (/home/howard/hw/linux-perf/tools/perf/perf+0x4e02d4) (BuildId: 5b6cab2d59e96a4341741765ad6914a4d784dbc6) 0.000 ( 0.014 ms): Chrome_ChildIO/117244 write(fd: 238, buf: !, count: 1) = 1 Fixes: 5e58fcf ("perf trace: Allow allocating sc->arg_fmt even without the syscall tracepoint") Signed-off-by: Howard Chu <howardchu95@gmail.com> Link: https://lore.kernel.org/r/20250122025519.361873-1-howardchu95@gmail.com Signed-off-by: Namhyung Kim <namhyung@kernel.org>
alobakin
pushed a commit
that referenced
this pull request
Feb 7, 2025
This fixes the following hard lockup in isolate_lru_folios() during memory reclaim. If the LRU mostly contains ineligible folios this may trigger watchdog. watchdog: Watchdog detected hard LOCKUP on cpu 173 RIP: 0010:native_queued_spin_lock_slowpath+0x255/0x2a0 Call Trace: _raw_spin_lock_irqsave+0x31/0x40 folio_lruvec_lock_irqsave+0x5f/0x90 folio_batch_move_lru+0x91/0x150 lru_add_drain_per_cpu+0x1c/0x40 process_one_work+0x17d/0x350 worker_thread+0x27b/0x3a0 kthread+0xe8/0x120 ret_from_fork+0x34/0x50 ret_from_fork_asm+0x1b/0x30 lruvec->lru_lock owner: PID: 2865 TASK: ffff888139214d40 CPU: 40 COMMAND: "kswapd0" #0 [fffffe0000945e60] crash_nmi_callback at ffffffffa567a555 #1 [fffffe0000945e68] nmi_handle at ffffffffa563b171 #2 [fffffe0000945eb0] default_do_nmi at ffffffffa6575920 #3 [fffffe0000945ed0] exc_nmi at ffffffffa6575af4 #4 [fffffe0000945ef0] end_repeat_nmi at ffffffffa6601dde [exception RIP: isolate_lru_folios+403] RIP: ffffffffa597df53 RSP: ffffc90006fb7c28 RFLAGS: 00000002 RAX: 0000000000000001 RBX: ffffc90006fb7c60 RCX: ffffea04a2196f88 RDX: ffffc90006fb7c60 RSI: ffffc90006fb7c60 RDI: ffffea04a2197048 RBP: ffff88812cbd3010 R8: ffffea04a2197008 R9: 0000000000000001 R10: 0000000000000000 R11: 0000000000000001 R12: ffffea04a2197008 R13: ffffea04a2197048 R14: ffffc90006fb7de8 R15: 0000000003e3e937 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 <NMI exception stack> #5 [ffffc90006fb7c28] isolate_lru_folios at ffffffffa597df53 #6 [ffffc90006fb7cf8] shrink_active_list at ffffffffa597f788 #7 [ffffc90006fb7da8] balance_pgdat at ffffffffa5986db0 #8 [ffffc90006fb7ec0] kswapd at ffffffffa5987354 #9 [ffffc90006fb7ef8] kthread at ffffffffa5748238 crash> Scenario: User processe are requesting a large amount of memory and keep page active. Then a module continuously requests memory from ZONE_DMA32 area. Memory reclaim will be triggered due to ZONE_DMA32 watermark alarm reached. However pages in the LRU(active_anon) list are mostly from the ZONE_NORMAL area. Reproduce: Terminal 1: Construct to continuously increase pages active(anon). mkdir /tmp/memory mount -t tmpfs -o size=1024000M tmpfs /tmp/memory dd if=/dev/zero of=/tmp/memory/block bs=4M tail /tmp/memory/block Terminal 2: vmstat -a 1 active will increase. procs ---memory--- ---swap-- ---io---- -system-- ---cpu--- ... r b swpd free inact active si so bi bo 1 0 0 1445623076 45898836 83646008 0 0 0 1 0 0 1445623076 43450228 86094616 0 0 0 1 0 0 1445623076 41003480 88541364 0 0 0 1 0 0 1445623076 38557088 90987756 0 0 0 1 0 0 1445623076 36109688 93435156 0 0 0 1 0 0 1445619552 33663256 95881632 0 0 0 1 0 0 1445619804 31217140 98327792 0 0 0 1 0 0 1445619804 28769988 100774944 0 0 0 1 0 0 1445619804 26322348 103222584 0 0 0 1 0 0 1445619804 23875592 105669340 0 0 0 cat /proc/meminfo | head Active(anon) increase. MemTotal: 1579941036 kB MemFree: 1445618500 kB MemAvailable: 1453013224 kB Buffers: 6516 kB Cached: 128653956 kB SwapCached: 0 kB Active: 118110812 kB Inactive: 11436620 kB Active(anon): 115345744 kB Inactive(anon): 945292 kB When the Active(anon) is 115345744 kB, insmod module triggers the ZONE_DMA32 watermark. perf record -e vmscan:mm_vmscan_lru_isolate -aR perf script isolate_mode=0 classzone=1 order=1 nr_requested=32 nr_scanned=2 nr_skipped=2 nr_taken=0 lru=active_anon isolate_mode=0 classzone=1 order=1 nr_requested=32 nr_scanned=0 nr_skipped=0 nr_taken=0 lru=active_anon isolate_mode=0 classzone=1 order=0 nr_requested=32 nr_scanned=28835844 nr_skipped=28835844 nr_taken=0 lru=active_anon isolate_mode=0 classzone=1 order=1 nr_requested=32 nr_scanned=28835844 nr_skipped=28835844 nr_taken=0 lru=active_anon isolate_mode=0 classzone=1 order=0 nr_requested=32 nr_scanned=29 nr_skipped=29 nr_taken=0 lru=active_anon isolate_mode=0 classzone=1 order=0 nr_requested=32 nr_scanned=0 nr_skipped=0 nr_taken=0 lru=active_anon See nr_scanned=28835844. 28835844 * 4k = 115343376KB approximately equal to 115345744 kB. If increase Active(anon) to 1000G then insmod module triggers the ZONE_DMA32 watermark. hard lockup will occur. In my device nr_scanned = 0000000003e3e937 when hard lockup. Convert to memory size 0x0000000003e3e937 * 4KB = 261072092 KB. [ffffc90006fb7c28] isolate_lru_folios at ffffffffa597df53 ffffc90006fb7c30: 0000000000000020 0000000000000000 ffffc90006fb7c40: ffffc90006fb7d40 ffff88812cbd3000 ffffc90006fb7c50: ffffc90006fb7d30 0000000106fb7de8 ffffc90006fb7c60: ffffea04a2197008 ffffea0006ed4a48 ffffc90006fb7c70: 0000000000000000 0000000000000000 ffffc90006fb7c80: 0000000000000000 0000000000000000 ffffc90006fb7c90: 0000000000000000 0000000000000000 ffffc90006fb7ca0: 0000000000000000 0000000003e3e937 ffffc90006fb7cb0: 0000000000000000 0000000000000000 ffffc90006fb7cc0: 8d7c0b56b7874b00 ffff88812cbd3000 About the Fixes: Why did it take eight years to be discovered? The problem requires the following conditions to occur: 1. The device memory should be large enough. 2. Pages in the LRU(active_anon) list are mostly from the ZONE_NORMAL area. 3. The memory in ZONE_DMA32 needs to reach the watermark. If the memory is not large enough, or if the usage design of ZONE_DMA32 area memory is reasonable, this problem is difficult to detect. notes: The problem is most likely to occur in ZONE_DMA32 and ZONE_NORMAL, but other suitable scenarios may also trigger the problem. Link: https://lkml.kernel.org/r/20241119060842.274072-1-liuye@kylinos.cn Fixes: b2e1875 ("mm, vmscan: begin reclaiming pages on a per-node basis") Signed-off-by: liuye <liuye@kylinos.cn> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Yang Shi <yang@os.amperecomputing.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
alobakin
pushed a commit
that referenced
this pull request
Mar 14, 2025
The bnxt_queue_mem_alloc() is called to allocate new queue memory when a queue is restarted. It internally accesses rx buffer descriptor corresponding to the index. The rx buffer descriptor is allocated and set when the interface is up and it's freed when the interface is down. So, if queue is restarted if interface is down, kernel panic occurs. Splat looks like: BUG: unable to handle page fault for address: 000000000000b240 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 3 UID: 0 PID: 1563 Comm: ncdevmem2 Not tainted 6.14.0-rc2+ #9 844ddba6e7c459cafd0bf4db9a3198e Hardware name: ASUS System Product Name/PRIME Z690-P D4, BIOS 0603 11/01/2021 RIP: 0010:bnxt_queue_mem_alloc+0x3f/0x4e0 [bnxt_en] Code: 41 54 4d 89 c4 4d 69 c0 c0 05 00 00 55 48 89 f5 53 48 89 fb 4c 8d b5 40 05 00 00 48 83 ec 15 RSP: 0018:ffff9dcc83fef9e8 EFLAGS: 00010202 RAX: ffffffffc0457720 RBX: ffff934ed8d40000 RCX: 0000000000000000 RDX: 000000000000001f RSI: ffff934ea508f800 RDI: ffff934ea508f808 RBP: ffff934ea508f800 R08: 000000000000b240 R09: ffff934e84f4b000 R10: ffff9dcc83fefa30 R11: ffff934e84f4b000 R12: 000000000000001f R13: ffff934ed8d40ac0 R14: ffff934ea508fd40 R15: ffff934e84f4b000 FS: 00007fa73888c740(0000) GS:ffff93559f780000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000000000b240 CR3: 0000000145a2e000 CR4: 00000000007506f0 PKRU: 55555554 Call Trace: <TASK> ? __die+0x20/0x70 ? page_fault_oops+0x15a/0x460 ? exc_page_fault+0x6e/0x180 ? asm_exc_page_fault+0x22/0x30 ? __pfx_bnxt_queue_mem_alloc+0x10/0x10 [bnxt_en 7f85e76f4d724ba07471d7e39d9e773aea6597b7] ? bnxt_queue_mem_alloc+0x3f/0x4e0 [bnxt_en 7f85e76f4d724ba07471d7e39d9e773aea6597b7] netdev_rx_queue_restart+0xc5/0x240 net_devmem_bind_dmabuf_to_queue+0xf8/0x200 netdev_nl_bind_rx_doit+0x3a7/0x450 genl_family_rcv_msg_doit+0xd9/0x130 genl_rcv_msg+0x184/0x2b0 ? __pfx_netdev_nl_bind_rx_doit+0x10/0x10 ? __pfx_genl_rcv_msg+0x10/0x10 netlink_rcv_skb+0x54/0x100 genl_rcv+0x24/0x40 ... Reviewed-by: Somnath Kotur <somnath.kotur@broadcom.com> Reviewed-by: Jakub Kicinski <kuba@kernel.org> Fixes: 2d694c2 ("bnxt_en: implement netdev_queue_mgmt_ops") Signed-off-by: Taehee Yoo <ap420073@gmail.com> Reviewed-by: Mina Almasry <almasrymina@google.com> Link: https://patch.msgid.link/20250309134219.91670-3-ap420073@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
alobakin
pushed a commit
that referenced
this pull request
Mar 17, 2025
Chia-Yu Chang says: ==================== AccECN protocol preparation patch series Please find the v7 v7 (03-Mar-2025) - Move 2 new patches added in v6 to the next AccECN patch series v6 (27-Dec-2024) - Avoid removing removing the potential CA_ACK_WIN_UPDATE in ack_ev_flags of patch #1 (Eric Dumazet <edumazet@google.com>) - Add reviewed-by tag in patches #2, #3, #4, #5, #6, #7, #8, #12, #14 - Foloiwng 2 new pathces are added after patch #9 (Patch that adds SKB_GSO_TCP_ACCECN) * New patch #10 to replace exisiting SKB_GSO_TCP_ECN with SKB_GSO_TCP_ACCECN in the driver to avoid CWR flag corruption * New patch #11 adds AccECN for virtio by adding new negotiation flag (VIRTIO_NET_F_HOST/GUEST_ACCECN) in feature handshake and translating Accurate ECN GSO flag between virtio_net_hdr (VIRTIO_NET_HDR_GSO_ACCECN) and skb header (SKB_GSO_TCP_ACCECN) - Add detailed changelog and comments in #13 (Eric Dumazet <edumazet@google.com>) - Move patch #14 to the next AccECN patch series (Eric Dumazet <edumazet@google.com>) v5 (5-Nov-2024) - Add helper function "tcp_flags_ntohs" to preserve last 2 bytes of TCP flags of patch #4 (Paolo Abeni <pabeni@redhat.com>) - Fix reverse X-max tree order of patches #4, #11 (Paolo Abeni <pabeni@redhat.com>) - Rename variable "delta" as "timestamp_delta" of patch #2 fo clariety - Remove patch #14 in this series (Paolo Abeni <pabeni@redhat.com>, Joel Granados <joel.granados@kernel.org>) v4 (21-Oct-2024) - Fix line length warning of patches #2, #4, #8, #10, #11, #14 - Fix spaces preferred around '|' (ctx:VxV) warning of patch #7 - Add missing CC'ed of patches #4, #12, #14 v3 (19-Oct-2024) - Fix build error in v2 v2 (18-Oct-2024) - Fix warning caused by NETIF_F_GSO_ACCECN_BIT in patch #9 (Jakub Kicinski <kuba@kernel.org>) The full patch series can be found in https://github.com/L4STeam/linux-net-next/commits/upstream_l4steam/ The Accurate ECN draft can be found in https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-accurate-ecn-28 ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
alobakin
pushed a commit
that referenced
this pull request
Apr 1, 2025
perf test 11 hwmon fails on s390 with this error # ./perf test -Fv 11 --- start --- ---- end ---- 11.1: Basic parsing test : Ok --- start --- Testing 'temp_test_hwmon_event1' Using CPUID IBM,3931,704,A01,3.7,002f temp_test_hwmon_event1 -> hwmon_a_test_hwmon_pmu/temp_test_hwmon_event1/ FAILED tests/hwmon_pmu.c:189 Unexpected config for 'temp_test_hwmon_event1', 292470092988416 != 655361 ---- end ---- 11.2: Parsing without PMU name : FAILED! --- start --- Testing 'hwmon_a_test_hwmon_pmu/temp_test_hwmon_event1/' FAILED tests/hwmon_pmu.c:189 Unexpected config for 'hwmon_a_test_hwmon_pmu/temp_test_hwmon_event1/', 292470092988416 != 655361 ---- end ---- 11.3: Parsing with PMU name : FAILED! # The root cause is in member test_event::config which is initialized to 0xA0001 or 655361. During event parsing a long list event parsing functions are called and end up with this gdb call stack: #0 hwmon_pmu__config_term (hwm=0x168dfd0, attr=0x3ffffff5ee8, term=0x168db60, err=0x3ffffff81c8) at util/hwmon_pmu.c:623 #1 hwmon_pmu__config_terms (pmu=0x168dfd0, attr=0x3ffffff5ee8, terms=0x3ffffff5ea8, err=0x3ffffff81c8) at util/hwmon_pmu.c:662 #2 0x00000000012f870c in perf_pmu__config_terms (pmu=0x168dfd0, attr=0x3ffffff5ee8, terms=0x3ffffff5ea8, zero=false, apply_hardcoded=false, err=0x3ffffff81c8) at util/pmu.c:1519 #3 0x00000000012f88a4 in perf_pmu__config (pmu=0x168dfd0, attr=0x3ffffff5ee8, head_terms=0x3ffffff5ea8, apply_hardcoded=false, err=0x3ffffff81c8) at util/pmu.c:1545 #4 0x00000000012680c4 in parse_events_add_pmu (parse_state=0x3ffffff7fb8, list=0x168dc00, pmu=0x168dfd0, const_parsed_terms=0x3ffffff6090, auto_merge_stats=true, alternate_hw_config=10) at util/parse-events.c:1508 #5 0x00000000012684c6 in parse_events_multi_pmu_add (parse_state=0x3ffffff7fb8, event_name=0x168ec10 "temp_test_hwmon_event1", hw_config=10, const_parsed_terms=0x0, listp=0x3ffffff6230, loc_=0x3ffffff70e0) at util/parse-events.c:1592 #6 0x00000000012f0e4e in parse_events_parse (_parse_state=0x3ffffff7fb8, scanner=0x16878c0) at util/parse-events.y:293 #7 0x00000000012695a0 in parse_events__scanner (str=0x3ffffff81d8 "temp_test_hwmon_event1", input=0x0, parse_state=0x3ffffff7fb8) at util/parse-events.c:1867 #8 0x000000000126a1e8 in __parse_events (evlist=0x168b580, str=0x3ffffff81d8 "temp_test_hwmon_event1", pmu_filter=0x0, err=0x3ffffff81c8, fake_pmu=false, warn_if_reordered=true, fake_tp=false) at util/parse-events.c:2136 #9 0x00000000011e36aa in parse_events (evlist=0x168b580, str=0x3ffffff81d8 "temp_test_hwmon_event1", err=0x3ffffff81c8) at /root/linux/tools/perf/util/parse-events.h:41 #10 0x00000000011e3e64 in do_test (i=0, with_pmu=false, with_alias=false) at tests/hwmon_pmu.c:164 #11 0x00000000011e422c in test__hwmon_pmu (with_pmu=false) at tests/hwmon_pmu.c:219 #12 0x00000000011e431c in test__hwmon_pmu_without_pmu (test=0x1610368 <suite.hwmon_pmu>, subtest=1) at tests/hwmon_pmu.c:23 where the attr::config is set to value 292470092988416 or 0x10a0000000000 in line 625 of file ./util/hwmon_pmu.c: attr->config = key.type_and_num; However member key::type_and_num is defined as union and bit field: union hwmon_pmu_event_key { long type_and_num; struct { int num :16; enum hwmon_type type :8; }; }; s390 is big endian and Intel is little endian architecture. The events for the hwmon dummy pmu have num = 1 or num = 2 and type is set to HWMON_TYPE_TEMP (which is 10). On s390 this assignes member key::type_and_num the value of 0x10a0000000000 (which is 292470092988416) as shown in above trace output. Fix this and export the structure/union hwmon_pmu_event_key so the test shares the same implementation as the event parsing functions for union and bit fields. This should avoid endianess issues on all platforms. Output after: # ./perf test -F 11 11.1: Basic parsing test : Ok 11.2: Parsing without PMU name : Ok 11.3: Parsing with PMU name : Ok # Fixes: 531ee0f ("perf test: Add hwmon "PMU" test") Signed-off-by: Thomas Richter <tmricht@linux.ibm.com> Reviewed-by: Ian Rogers <irogers@google.com> Link: https://lore.kernel.org/r/20250131112400.568975-1-tmricht@linux.ibm.com Signed-off-by: Namhyung Kim <namhyung@kernel.org>
alobakin
pushed a commit
that referenced
this pull request
Apr 1, 2025
Ian told me that there are many memory leaks in the hierarchy mode. I can easily reproduce it with the follwing command. $ make DEBUG=1 EXTRA_CFLAGS=-fsanitize=leak $ perf record --latency -g -- ./perf test -w thloop $ perf report -H --stdio ... Indirect leak of 168 byte(s) in 21 object(s) allocated from: #0 0x7f3414c16c65 in malloc ../../../../src/libsanitizer/lsan/lsan_interceptors.cpp:75 #1 0x55ed3602346e in map__get util/map.h:189 #2 0x55ed36024cc4 in hist_entry__init util/hist.c:476 #3 0x55ed36025208 in hist_entry__new util/hist.c:588 #4 0x55ed36027c05 in hierarchy_insert_entry util/hist.c:1587 #5 0x55ed36027e2e in hists__hierarchy_insert_entry util/hist.c:1638 #6 0x55ed36027fa4 in hists__collapse_insert_entry util/hist.c:1685 #7 0x55ed360283e8 in hists__collapse_resort util/hist.c:1776 #8 0x55ed35de0323 in report__collapse_hists /home/namhyung/project/linux/tools/perf/builtin-report.c:735 #9 0x55ed35de15b4 in __cmd_report /home/namhyung/project/linux/tools/perf/builtin-report.c:1119 #10 0x55ed35de43dc in cmd_report /home/namhyung/project/linux/tools/perf/builtin-report.c:1867 #11 0x55ed35e66767 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:351 #12 0x55ed35e66a0e in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:404 #13 0x55ed35e66b67 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:448 #14 0x55ed35e66eb0 in main /home/namhyung/project/linux/tools/perf/perf.c:556 #15 0x7f340ac33d67 in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58 ... $ perf report -H --stdio 2>&1 | grep -c '^Indirect leak' 93 I found that hist_entry__delete() missed to release child entries in the hierarchy tree (hroot_{in,out}). It needs to iterate the child entries and call hist_entry__delete() recursively. After this change: $ perf report -H --stdio 2>&1 | grep -c '^Indirect leak' 0 Reported-by: Ian Rogers <irogers@google.com> Tested-by Thomas Falcon <thomas.falcon@intel.com> Reviewed-by: Ian Rogers <irogers@google.com> Link: https://lore.kernel.org/r/20250307061250.320849-2-namhyung@kernel.org Signed-off-by: Namhyung Kim <namhyung@kernel.org>
alobakin
pushed a commit
that referenced
this pull request
Apr 1, 2025
The env.pmu_mapping can be leaked when it reads data from a pipe on AMD. For a pipe data, it reads the header data including pmu_mapping from PERF_RECORD_HEADER_FEATURE runtime. But it's already set in: perf_session__new() __perf_session__new() evlist__init_trace_event_sample_raw() evlist__has_amd_ibs() perf_env__nr_pmu_mappings() Then it'll overwrite that when it processes the HEADER_FEATURE record. Here's a report from address sanitizer. Direct leak of 2689 byte(s) in 1 object(s) allocated from: #0 0x7fed8f814596 in realloc ../../../../src/libsanitizer/lsan/lsan_interceptors.cpp:98 #1 0x5595a7d416b1 in strbuf_grow util/strbuf.c:64 #2 0x5595a7d414ef in strbuf_init util/strbuf.c:25 #3 0x5595a7d0f4b7 in perf_env__read_pmu_mappings util/env.c:362 #4 0x5595a7d12ab7 in perf_env__nr_pmu_mappings util/env.c:517 #5 0x5595a7d89d2f in evlist__has_amd_ibs util/amd-sample-raw.c:315 #6 0x5595a7d87fb2 in evlist__init_trace_event_sample_raw util/sample-raw.c:23 #7 0x5595a7d7f893 in __perf_session__new util/session.c:179 #8 0x5595a7b79572 in perf_session__new util/session.h:115 #9 0x5595a7b7e9dc in cmd_report builtin-report.c:1603 #10 0x5595a7c019eb in run_builtin perf.c:351 #11 0x5595a7c01c92 in handle_internal_command perf.c:404 #12 0x5595a7c01deb in run_argv perf.c:448 #13 0x5595a7c02134 in main perf.c:556 #14 0x7fed85833d67 in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58 Let's free the existing pmu_mapping data if any. Cc: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20250311000416.817631-1-namhyung@kernel.org Signed-off-by: Namhyung Kim <namhyung@kernel.org>
alobakin
pushed a commit
that referenced
this pull request
Apr 3, 2025
When a bio with REQ_PREFLUSH is submitted to dm, __send_empty_flush() generates a flush_bio with REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC, which causes the flush_bio to be throttled by wbt_wait(). An example from v5.4, similar problem also exists in upstream: crash> bt 2091206 PID: 2091206 TASK: ffff2050df92a300 CPU: 109 COMMAND: "kworker/u260:0" #0 [ffff800084a2f7f0] __switch_to at ffff80004008aeb8 #1 [ffff800084a2f820] __schedule at ffff800040bfa0c4 #2 [ffff800084a2f880] schedule at ffff800040bfa4b4 #3 [ffff800084a2f8a0] io_schedule at ffff800040bfa9c4 #4 [ffff800084a2f8c0] rq_qos_wait at ffff8000405925bc #5 [ffff800084a2f940] wbt_wait at ffff8000405bb3a0 #6 [ffff800084a2f9a0] __rq_qos_throttle at ffff800040592254 #7 [ffff800084a2f9c0] blk_mq_make_request at ffff80004057cf38 #8 [ffff800084a2fa60] generic_make_request at ffff800040570138 #9 [ffff800084a2fae0] submit_bio at ffff8000405703b4 #10 [ffff800084a2fb50] xlog_write_iclog at ffff800001280834 [xfs] #11 [ffff800084a2fbb0] xlog_sync at ffff800001280c3c [xfs] #12 [ffff800084a2fbf0] xlog_state_release_iclog at ffff800001280df4 [xfs] #13 [ffff800084a2fc10] xlog_write at ffff80000128203c [xfs] #14 [ffff800084a2fcd0] xlog_cil_push at ffff8000012846dc [xfs] #15 [ffff800084a2fda0] xlog_cil_push_work at ffff800001284a2c [xfs] #16 [ffff800084a2fdb0] process_one_work at ffff800040111d08 #17 [ffff800084a2fe00] worker_thread at ffff8000401121cc #18 [ffff800084a2fe70] kthread at ffff800040118de4 After commit 2def284 ("xfs: don't allow log IO to be throttled"), the metadata submitted by xlog_write_iclog() should not be throttled. But due to the existence of the dm layer, throttling flush_bio indirectly causes the metadata bio to be throttled. Fix this by conditionally adding REQ_IDLE to flush_bio.bi_opf, which makes wbt_should_throttle() return false to avoid wbt_wait(). Signed-off-by: Jinliang Zheng <alexjlzheng@tencent.com> Reviewed-by: Tianxiang Peng <txpeng@tencent.com> Reviewed-by: Hao Peng <flyingpeng@tencent.com> Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
alobakin
pushed a commit
that referenced
this pull request
May 12, 2025
As shown in [1], it is possible to corrupt a BPF ELF file such that arbitrary BPF instructions are loaded by libbpf. This can be done by setting a symbol (BPF program) section offset to a large (unsigned) number such that <section start + symbol offset> overflows and points before the section data in the memory. Consider the situation below where: - prog_start = sec_start + symbol_offset <-- size_t overflow here - prog_end = prog_start + prog_size prog_start sec_start prog_end sec_end | | | | v v v v .....................|################################|............ The report in [1] also provides a corrupted BPF ELF which can be used as a reproducer: $ readelf -S crash Section Headers: [Nr] Name Type Address Offset Size EntSize Flags Link Info Align ... [ 2] uretprobe.mu[...] PROGBITS 0000000000000000 00000040 0000000000000068 0000000000000000 AX 0 0 8 $ readelf -s crash Symbol table '.symtab' contains 8 entries: Num: Value Size Type Bind Vis Ndx Name ... 6: ffffffffffffffb8 104 FUNC GLOBAL DEFAULT 2 handle_tp Here, the handle_tp prog has section offset ffffffffffffffb8, i.e. will point before the actual memory where section 2 is allocated. This is also reported by AddressSanitizer: ================================================================= ==1232==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x7c7302fe0000 at pc 0x7fc3046e4b77 bp 0x7ffe64677cd0 sp 0x7ffe64677490 READ of size 104 at 0x7c7302fe0000 thread T0 #0 0x7fc3046e4b76 in memcpy (/lib64/libasan.so.8+0xe4b76) #1 0x00000040df3e in bpf_object__init_prog /src/libbpf/src/libbpf.c:856 #2 0x00000040df3e in bpf_object__add_programs /src/libbpf/src/libbpf.c:928 #3 0x00000040df3e in bpf_object__elf_collect /src/libbpf/src/libbpf.c:3930 #4 0x00000040df3e in bpf_object_open /src/libbpf/src/libbpf.c:8067 #5 0x00000040f176 in bpf_object__open_file /src/libbpf/src/libbpf.c:8090 #6 0x000000400c16 in main /poc/poc.c:8 #7 0x7fc3043d25b4 in __libc_start_call_main (/lib64/libc.so.6+0x35b4) #8 0x7fc3043d2667 in __libc_start_main@@GLIBC_2.34 (/lib64/libc.so.6+0x3667) #9 0x000000400b34 in _start (/poc/poc+0x400b34) 0x7c7302fe0000 is located 64 bytes before 104-byte region [0x7c7302fe0040,0x7c7302fe00a8) allocated by thread T0 here: #0 0x7fc3046e716b in malloc (/lib64/libasan.so.8+0xe716b) #1 0x7fc3045ee600 in __libelf_set_rawdata_wrlock (/lib64/libelf.so.1+0xb600) #2 0x7fc3045ef018 in __elf_getdata_rdlock (/lib64/libelf.so.1+0xc018) #3 0x00000040642f in elf_sec_data /src/libbpf/src/libbpf.c:3740 The problem here is that currently, libbpf only checks that the program end is within the section bounds. There used to be a check `while (sec_off < sec_sz)` in bpf_object__add_programs, however, it was removed by commit 6245947 ("libbpf: Allow gaps in BPF program sections to support overriden weak functions"). Add a check for detecting the overflow of `sec_off + prog_sz` to bpf_object__init_prog to fix this issue. [1] https://github.com/lmarch2/poc/blob/main/libbpf/libbpf.md Fixes: 6245947 ("libbpf: Allow gaps in BPF program sections to support overriden weak functions") Reported-by: lmarch2 <2524158037@qq.com> Signed-off-by: Viktor Malik <vmalik@redhat.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Shung-Hsi Yu <shung-hsi.yu@suse.com> Link: https://github.com/lmarch2/poc/blob/main/libbpf/libbpf.md Link: https://lore.kernel.org/bpf/20250415155014.397603-1-vmalik@redhat.com
michalQb
pushed a commit
to michalQb/linux-olek
that referenced
this pull request
Jun 16, 2025
Commit e77aff5 ("binderfs: fix use-after-free in binder_devices") addressed a use-after-free where devices could be released without first being removed from the binder_devices list. However, there is a similar path in binder_free_proc() that was missed: ================================================================== BUG: KASAN: slab-use-after-free in binder_remove_device+0xd4/0x100 Write of size 8 at addr ffff0000c773b900 by task umount/467 CPU: 12 UID: 0 PID: 467 Comm: umount Not tainted 6.15.0-rc7-00138-g57483a362741 alobakin#9 PREEMPT Hardware name: linux,dummy-virt (DT) Call trace: binder_remove_device+0xd4/0x100 binderfs_evict_inode+0x230/0x2f0 evict+0x25c/0x5dc iput+0x304/0x480 dentry_unlink_inode+0x208/0x46c __dentry_kill+0x154/0x530 [...] Allocated by task 463: __kmalloc_cache_noprof+0x13c/0x324 binderfs_binder_device_create.isra.0+0x138/0xa60 binder_ctl_ioctl+0x1ac/0x230 [...] Freed by task 215: kfree+0x184/0x31c binder_proc_dec_tmpref+0x33c/0x4ac binder_deferred_func+0xc10/0x1108 process_one_work+0x520/0xba4 [...] ================================================================== Call binder_remove_device() within binder_free_proc() to ensure the device is removed from the binder_devices list before being kfreed. Cc: stable@vger.kernel.org Fixes: 12d909c ("binderfs: add new binder devices to binder_devices") Reported-by: syzbot+4af454407ec393de51d6@syzkaller.appspotmail.com Closes: https://syzkaller.appspot.com/bug?extid=4af454407ec393de51d6 Tested-by: syzbot+4af454407ec393de51d6@syzkaller.appspotmail.com Signed-off-by: Carlos Llamas <cmllamas@google.com> Link: https://lore.kernel.org/r/20250524220758.915028-1-cmllamas@google.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
alobakin
pushed a commit
that referenced
this pull request
Jul 7, 2025
Remove redundant netif_napi_del() call from disconnect path. A WARN may be triggered in __netif_napi_del_locked() during USB device disconnect: WARNING: CPU: 0 PID: 11 at net/core/dev.c:7417 __netif_napi_del_locked+0x2b4/0x350 This happens because netif_napi_del() is called in the disconnect path while NAPI is still enabled. However, it is not necessary to call netif_napi_del() explicitly, since unregister_netdev() will handle NAPI teardown automatically and safely. Removing the redundant call avoids triggering the warning. Full trace: lan78xx 1-1:1.0 enu1: Failed to read register index 0x000000c4. ret = -ENODEV lan78xx 1-1:1.0 enu1: Failed to set MAC down with error -ENODEV lan78xx 1-1:1.0 enu1: Link is Down lan78xx 1-1:1.0 enu1: Failed to read register index 0x00000120. ret = -ENODEV ------------[ cut here ]------------ WARNING: CPU: 0 PID: 11 at net/core/dev.c:7417 __netif_napi_del_locked+0x2b4/0x350 Modules linked in: flexcan can_dev fuse CPU: 0 UID: 0 PID: 11 Comm: kworker/0:1 Not tainted 6.16.0-rc2-00624-ge926949dab03 #9 PREEMPT Hardware name: SKOV IMX8MP CPU revC - bd500 (DT) Workqueue: usb_hub_wq hub_event pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : __netif_napi_del_locked+0x2b4/0x350 lr : __netif_napi_del_locked+0x7c/0x350 sp : ffffffc085b673c0 x29: ffffffc085b673c0 x28: ffffff800b7f2000 x27: ffffff800b7f20d8 x26: ffffff80110bcf58 x25: ffffff80110bd978 x24: 1ffffff0022179eb x23: ffffff80110bc000 x22: ffffff800b7f5000 x21: ffffff80110bc000 x20: ffffff80110bcf38 x19: ffffff80110bcf28 x18: dfffffc000000000 x17: ffffffc081578940 x16: ffffffc08284cee0 x15: 0000000000000028 x14: 0000000000000006 x13: 0000000000040000 x12: ffffffb0022179e8 x11: 1ffffff0022179e7 x10: ffffffb0022179e7 x9 : dfffffc000000000 x8 : 0000004ffdde8619 x7 : ffffff80110bcf3f x6 : 0000000000000001 x5 : ffffff80110bcf38 x4 : ffffff80110bcf38 x3 : 0000000000000000 x2 : 0000000000000000 x1 : 1ffffff0022179e7 x0 : 0000000000000000 Call trace: __netif_napi_del_locked+0x2b4/0x350 (P) lan78xx_disconnect+0xf4/0x360 usb_unbind_interface+0x158/0x718 device_remove+0x100/0x150 device_release_driver_internal+0x308/0x478 device_release_driver+0x1c/0x30 bus_remove_device+0x1a8/0x368 device_del+0x2e0/0x7b0 usb_disable_device+0x244/0x540 usb_disconnect+0x220/0x758 hub_event+0x105c/0x35e0 process_one_work+0x760/0x17b0 worker_thread+0x768/0xce8 kthread+0x3bc/0x690 ret_from_fork+0x10/0x20 irq event stamp: 211604 hardirqs last enabled at (211603): [<ffffffc0828cc9ec>] _raw_spin_unlock_irqrestore+0x84/0x98 hardirqs last disabled at (211604): [<ffffffc0828a9a84>] el1_dbg+0x24/0x80 softirqs last enabled at (211296): [<ffffffc080095f10>] handle_softirqs+0x820/0xbc8 softirqs last disabled at (210993): [<ffffffc080010288>] __do_softirq+0x18/0x20 ---[ end trace 0000000000000000 ]--- lan78xx 1-1:1.0 enu1: failed to kill vid 0081/0 Fixes: ec4c7e1 ("lan78xx: Introduce NAPI polling support") Suggested-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Oleksij Rempel <o.rempel@pengutronix.de> Link: https://patch.msgid.link/20250627051346.276029-1-o.rempel@pengutronix.de Signed-off-by: Jakub Kicinski <kuba@kernel.org>
alobakin
pushed a commit
that referenced
this pull request
Jul 18, 2025
A crash in conntrack was reported while trying to unlink the conntrack entry from the hash bucket list: [exception RIP: __nf_ct_delete_from_lists+172] [..] #7 [ff539b5a2b043aa0] nf_ct_delete at ffffffffc124d421 [nf_conntrack] #8 [ff539b5a2b043ad0] nf_ct_gc_expired at ffffffffc124d999 [nf_conntrack] #9 [ff539b5a2b043ae0] __nf_conntrack_find_get at ffffffffc124efbc [nf_conntrack] [..] The nf_conn struct is marked as allocated from slab but appears to be in a partially initialised state: ct hlist pointer is garbage; looks like the ct hash value (hence crash). ct->status is equal to IPS_CONFIRMED|IPS_DYING, which is expected ct->timeout is 30000 (=30s), which is unexpected. Everything else looks like normal udp conntrack entry. If we ignore ct->status and pretend its 0, the entry matches those that are newly allocated but not yet inserted into the hash: - ct hlist pointers are overloaded and store/cache the raw tuple hash - ct->timeout matches the relative time expected for a new udp flow rather than the absolute 'jiffies' value. If it were not for the presence of IPS_CONFIRMED, __nf_conntrack_find_get() would have skipped the entry. Theory is that we did hit following race: cpu x cpu y cpu z found entry E found entry E E is expired <preemption> nf_ct_delete() return E to rcu slab init_conntrack E is re-inited, ct->status set to 0 reply tuplehash hnnode.pprev stores hash value. cpu y found E right before it was deleted on cpu x. E is now re-inited on cpu z. cpu y was preempted before checking for expiry and/or confirm bit. ->refcnt set to 1 E now owned by skb ->timeout set to 30000 If cpu y were to resume now, it would observe E as expired but would skip E due to missing CONFIRMED bit. nf_conntrack_confirm gets called sets: ct->status |= CONFIRMED This is wrong: E is not yet added to hashtable. cpu y resumes, it observes E as expired but CONFIRMED: <resumes> nf_ct_expired() -> yes (ct->timeout is 30s) confirmed bit set. cpu y will try to delete E from the hashtable: nf_ct_delete() -> set DYING bit __nf_ct_delete_from_lists Even this scenario doesn't guarantee a crash: cpu z still holds the table bucket lock(s) so y blocks: wait for spinlock held by z CONFIRMED is set but there is no guarantee ct will be added to hash: "chaintoolong" or "clash resolution" logic both skip the insert step. reply hnnode.pprev still stores the hash value. unlocks spinlock return NF_DROP <unblocks, then crashes on hlist_nulls_del_rcu pprev> In case CPU z does insert the entry into the hashtable, cpu y will unlink E again right away but no crash occurs. Without 'cpu y' race, 'garbage' hlist is of no consequence: ct refcnt remains at 1, eventually skb will be free'd and E gets destroyed via: nf_conntrack_put -> nf_conntrack_destroy -> nf_ct_destroy. To resolve this, move the IPS_CONFIRMED assignment after the table insertion but before the unlock. Pablo points out that the confirm-bit-store could be reordered to happen before hlist add resp. the timeout fixup, so switch to set_bit and before_atomic memory barrier to prevent this. It doesn't matter if other CPUs can observe a newly inserted entry right before the CONFIRMED bit was set: Such event cannot be distinguished from above "E is the old incarnation" case: the entry will be skipped. Also change nf_ct_should_gc() to first check the confirmed bit. The gc sequence is: 1. Check if entry has expired, if not skip to next entry 2. Obtain a reference to the expired entry. 3. Call nf_ct_should_gc() to double-check step 1. nf_ct_should_gc() is thus called only for entries that already failed an expiry check. After this patch, once the confirmed bit check passes ct->timeout has been altered to reflect the absolute 'best before' date instead of a relative time. Step 3 will therefore not remove the entry. Without this change to nf_ct_should_gc() we could still get this sequence: 1. Check if entry has expired. 2. Obtain a reference. 3. Call nf_ct_should_gc() to double-check step 1: 4 - entry is still observed as expired 5 - meanwhile, ct->timeout is corrected to absolute value on other CPU and confirm bit gets set 6 - confirm bit is seen 7 - valid entry is removed again First do check 6), then 4) so the gc expiry check always picks up either confirmed bit unset (entry gets skipped) or expiry re-check failure for re-inited conntrack objects. This change cannot be backported to releases before 5.19. Without commit 8a75a2c ("netfilter: conntrack: remove unconfirmed list") |= IPS_CONFIRMED line cannot be moved without further changes. Cc: Razvan Cojocaru <rzvncj@gmail.com> Link: https://lore.kernel.org/netfilter-devel/20250627142758.25664-1-fw@strlen.de/ Link: https://lore.kernel.org/netfilter-devel/4239da15-83ff-4ca4-939d-faef283471bb@gmail.com/ Fixes: 1397af5 ("netfilter: conntrack: remove the percpu dying list") Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
alobakin
pushed a commit
that referenced
this pull request
Aug 4, 2025
pert script tests fails with segmentation fault as below: 92: perf script tests: --- start --- test child forked, pid 103769 DB test [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.012 MB /tmp/perf-test-script.7rbftEpOzX/perf.data (9 samples) ] /usr/libexec/perf-core/tests/shell/script.sh: line 35: 103780 Segmentation fault (core dumped) perf script -i "${perfdatafile}" -s "${db_test}" --- Cleaning up --- ---- end(-1) ---- 92: perf script tests : FAILED! Backtrace pointed to : #0 0x0000000010247dd0 in maps.machine () #1 0x00000000101d178c in db_export.sample () #2 0x00000000103412c8 in python_process_event () #3 0x000000001004eb28 in process_sample_event () #4 0x000000001024fcd0 in machines.deliver_event () #5 0x000000001025005c in perf_session.deliver_event () #6 0x00000000102568b0 in __ordered_events__flush.part.0 () #7 0x0000000010251618 in perf_session.process_events () #8 0x0000000010053620 in cmd_script () #9 0x00000000100b5a28 in run_builtin () #10 0x00000000100b5f94 in handle_internal_command () #11 0x0000000010011114 in main () Further investigation reveals that this occurs in the `perf script tests`, because it uses `db_test.py` script. This script sets `perf_db_export_mode = True`. With `perf_db_export_mode` enabled, if a sample originates from a hypervisor, perf doesn't set maps for "[H]" sample in the code. Consequently, `al->maps` remains NULL when `maps__machine(al->maps)` is called from `db_export__sample`. As al->maps can be NULL in case of Hypervisor samples , use thread->maps because even for Hypervisor sample, machine should exist. If we don't have machine for some reason, return -1 to avoid segmentation fault. Reported-by: Disha Goel <disgoel@linux.ibm.com> Signed-off-by: Aditya Bodkhe <aditya.b1@linux.ibm.com> Reviewed-by: Adrian Hunter <adrian.hunter@intel.com> Tested-by: Disha Goel <disgoel@linux.ibm.com> Link: https://lore.kernel.org/r/20250429065132.36839-1-adityab1@linux.ibm.com Suggested-by: Adrian Hunter <adrian.hunter@intel.com> Signed-off-by: Namhyung Kim <namhyung@kernel.org>
alobakin
pushed a commit
that referenced
this pull request
Aug 4, 2025
Without the change `perf `hangs up on charaster devices. On my system it's enough to run system-wide sampler for a few seconds to get the hangup: $ perf record -a -g --call-graph=dwarf $ perf report # hung `strace` shows that hangup happens on reading on a character device `/dev/dri/renderD128` $ strace -y -f -p 2780484 strace: Process 2780484 attached pread64(101</dev/dri/renderD128>, strace: Process 2780484 detached It's call trace descends into `elfutils`: $ gdb -p 2780484 (gdb) bt #0 0x00007f5e508f04b7 in __libc_pread64 (fd=101, buf=0x7fff9df7edb0, count=0, offset=0) at ../sysdeps/unix/sysv/linux/pread64.c:25 #1 0x00007f5e52b79515 in read_file () from /<<NIX>>/elfutils-0.192/lib/libelf.so.1 #2 0x00007f5e52b25666 in libdw_open_elf () from /<<NIX>>/elfutils-0.192/lib/libdw.so.1 #3 0x00007f5e52b25907 in __libdw_open_file () from /<<NIX>>/elfutils-0.192/lib/libdw.so.1 #4 0x00007f5e52b120a9 in dwfl_report_elf@@ELFUTILS_0.156 () from /<<NIX>>/elfutils-0.192/lib/libdw.so.1 #5 0x000000000068bf20 in __report_module (al=al@entry=0x7fff9df80010, ip=ip@entry=139803237033216, ui=ui@entry=0x5369b5e0) at util/dso.h:537 #6 0x000000000068c3d1 in report_module (ip=139803237033216, ui=0x5369b5e0) at util/unwind-libdw.c:114 #7 frame_callback (state=0x535aef10, arg=0x5369b5e0) at util/unwind-libdw.c:242 #8 0x00007f5e52b261d3 in dwfl_thread_getframes () from /<<NIX>>/elfutils-0.192/lib/libdw.so.1 #9 0x00007f5e52b25bdb in get_one_thread_cb () from /<<NIX>>/elfutils-0.192/lib/libdw.so.1 #10 0x00007f5e52b25faa in dwfl_getthreads () from /<<NIX>>/elfutils-0.192/lib/libdw.so.1 #11 0x00007f5e52b26514 in dwfl_getthread_frames () from /<<NIX>>/elfutils-0.192/lib/libdw.so.1 #12 0x000000000068c6ce in unwind__get_entries (cb=cb@entry=0x5d4620 <unwind_entry>, arg=arg@entry=0x10cd5fa0, thread=thread@entry=0x1076a290, data=data@entry=0x7fff9df80540, max_stack=max_stack@entry=127, best_effort=best_effort@entry=false) at util/thread.h:152 #13 0x00000000005dae95 in thread__resolve_callchain_unwind (evsel=0x106006d0, thread=0x1076a290, cursor=0x10cd5fa0, sample=0x7fff9df80540, max_stack=127, symbols=true) at util/machine.c:2939 #14 thread__resolve_callchain_unwind (thread=0x1076a290, cursor=0x10cd5fa0, evsel=0x106006d0, sample=0x7fff9df80540, max_stack=127, symbols=true) at util/machine.c:2920 #15 __thread__resolve_callchain (thread=0x1076a290, cursor=0x10cd5fa0, evsel=0x106006d0, evsel@entry=0x7fff9df80440, sample=0x7fff9df80540, parent=parent@entry=0x7fff9df804a0, root_al=root_al@entry=0x7fff9df80440, max_stack=127, symbols=true) at util/machine.c:2970 #16 0x00000000005d0cb2 in thread__resolve_callchain (thread=<optimized out>, cursor=<optimized out>, evsel=0x7fff9df80440, sample=<optimized out>, parent=0x7fff9df804a0, root_al=0x7fff9df80440, max_stack=127) at util/machine.h:198 #17 sample__resolve_callchain (sample=<optimized out>, cursor=<optimized out>, parent=parent@entry=0x7fff9df804a0, evsel=evsel@entry=0x106006d0, al=al@entry=0x7fff9df80440, max_stack=max_stack@entry=127) at util/callchain.c:1127 #18 0x0000000000617e08 in hist_entry_iter__add (iter=iter@entry=0x7fff9df80480, al=al@entry=0x7fff9df80440, max_stack_depth=127, arg=arg@entry=0x7fff9df81ae0) at util/hist.c:1255 #19 0x000000000045d2d0 in process_sample_event (tool=0x7fff9df81ae0, event=<optimized out>, sample=0x7fff9df80540, evsel=0x106006d0, machine=<optimized out>) at builtin-report.c:334 #20 0x00000000005e3bb1 in perf_session__deliver_event (session=0x105ff2c0, event=0x7f5c7d735ca0, tool=0x7fff9df81ae0, file_offset=2914716832, file_path=0x105ffbf0 "perf.data") at util/session.c:1367 #21 0x00000000005e8d93 in do_flush (oe=0x105ffa50, show_progress=false) at util/ordered-events.c:245 #22 __ordered_events__flush (oe=0x105ffa50, how=OE_FLUSH__ROUND, timestamp=<optimized out>) at util/ordered-events.c:324 #23 0x00000000005e1f64 in perf_session__process_user_event (session=0x105ff2c0, event=0x7f5c7d752b18, file_offset=2914835224, file_path=0x105ffbf0 "perf.data") at util/session.c:1419 #24 0x00000000005e47c7 in reader__read_event (rd=rd@entry=0x7fff9df81260, session=session@entry=0x105ff2c0, --Type <RET> for more, q to quit, c to continue without paging-- quit prog=prog@entry=0x7fff9df81220) at util/session.c:2132 #25 0x00000000005e4b37 in reader__process_events (rd=0x7fff9df81260, session=0x105ff2c0, prog=0x7fff9df81220) at util/session.c:2181 #26 __perf_session__process_events (session=0x105ff2c0) at util/session.c:2226 #27 perf_session__process_events (session=session@entry=0x105ff2c0) at util/session.c:2390 #28 0x0000000000460add in __cmd_report (rep=0x7fff9df81ae0) at builtin-report.c:1076 torvalds#29 cmd_report (argc=<optimized out>, argv=<optimized out>) at builtin-report.c:1827 torvalds#30 0x00000000004c5a40 in run_builtin (p=p@entry=0xd8f7f8 <commands+312>, argc=argc@entry=1, argv=argv@entry=0x7fff9df844b0) at perf.c:351 torvalds#31 0x00000000004c5d63 in handle_internal_command (argc=argc@entry=1, argv=argv@entry=0x7fff9df844b0) at perf.c:404 torvalds#32 0x0000000000442de3 in run_argv (argcp=<synthetic pointer>, argv=<synthetic pointer>) at perf.c:448 torvalds#33 main (argc=<optimized out>, argv=0x7fff9df844b0) at perf.c:556 The hangup happens because nothing in` perf` or `elfutils` checks if a mapped file is easily readable. The change conservatively skips all non-regular files. Signed-off-by: Sergei Trofimovich <slyich@gmail.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Link: https://lore.kernel.org/r/20250505174419.2814857-1-slyich@gmail.com Signed-off-by: Namhyung Kim <namhyung@kernel.org>
alobakin
pushed a commit
that referenced
this pull request
Aug 4, 2025
Symbolize stack traces by creating a live machine. Add this functionality to dump_stack and switch dump_stack users to use it. Switch TUI to use it. Add stack traces to the child test function which can be useful to diagnose blocked code. Example output: ``` $ perf test -vv PERF_RECORD_ ... 7: PERF_RECORD_* events & perf_sample fields: 7: PERF_RECORD_* events & perf_sample fields : Running (1 active) ^C Signal (2) while running tests. Terminating tests with the same signal Internal test harness failure. Completing any started tests: : 7: PERF_RECORD_* events & perf_sample fields: ---- unexpected signal (2) ---- #0 0x55788c6210a3 in child_test_sig_handler builtin-test.c:0 #1 0x7fc12fe49df0 in __restore_rt libc_sigaction.c:0 #2 0x7fc12fe99687 in __internal_syscall_cancel cancellation.c:64 #3 0x7fc12fee5f7a in clock_nanosleep@GLIBC_2.2.5 clock_nanosleep.c:72 #4 0x7fc12fef1393 in __nanosleep nanosleep.c:26 #5 0x7fc12ff02d68 in __sleep sleep.c:55 #6 0x55788c63196b in test__PERF_RECORD perf-record.c:0 #7 0x55788c620fb0 in run_test_child builtin-test.c:0 #8 0x55788c5bd18d in start_command run-command.c:127 #9 0x55788c621ef3 in __cmd_test builtin-test.c:0 #10 0x55788c6225bf in cmd_test ??:0 #11 0x55788c5afbd0 in run_builtin perf.c:0 #12 0x55788c5afeeb in handle_internal_command perf.c:0 #13 0x55788c52b383 in main ??:0 #14 0x7fc12fe33ca8 in __libc_start_call_main libc_start_call_main.h:74 #15 0x7fc12fe33d65 in __libc_start_main@@GLIBC_2.34 libc-start.c:128 #16 0x55788c52b9d1 in _start ??:0 ---- unexpected signal (2) ---- #0 0x55788c6210a3 in child_test_sig_handler builtin-test.c:0 #1 0x7fc12fe49df0 in __restore_rt libc_sigaction.c:0 #2 0x7fc12fea3a14 in pthread_sigmask@GLIBC_2.2.5 pthread_sigmask.c:45 #3 0x7fc12fe49fd9 in __GI___sigprocmask sigprocmask.c:26 #4 0x7fc12ff2601b in __longjmp_chk longjmp.c:36 #5 0x55788c6210c0 in print_test_result.isra.0 builtin-test.c:0 #6 0x7fc12fe49df0 in __restore_rt libc_sigaction.c:0 #7 0x7fc12fe99687 in __internal_syscall_cancel cancellation.c:64 #8 0x7fc12fee5f7a in clock_nanosleep@GLIBC_2.2.5 clock_nanosleep.c:72 #9 0x7fc12fef1393 in __nanosleep nanosleep.c:26 #10 0x7fc12ff02d68 in __sleep sleep.c:55 #11 0x55788c63196b in test__PERF_RECORD perf-record.c:0 #12 0x55788c620fb0 in run_test_child builtin-test.c:0 #13 0x55788c5bd18d in start_command run-command.c:127 #14 0x55788c621ef3 in __cmd_test builtin-test.c:0 #15 0x55788c6225bf in cmd_test ??:0 #16 0x55788c5afbd0 in run_builtin perf.c:0 #17 0x55788c5afeeb in handle_internal_command perf.c:0 #18 0x55788c52b383 in main ??:0 #19 0x7fc12fe33ca8 in __libc_start_call_main libc_start_call_main.h:74 #20 0x7fc12fe33d65 in __libc_start_main@@GLIBC_2.34 libc-start.c:128 #21 0x55788c52b9d1 in _start ??:0 7: PERF_RECORD_* events & perf_sample fields : Skip (permissions) ``` Signed-off-by: Ian Rogers <irogers@google.com> Link: https://lore.kernel.org/r/20250624210500.2121303-1-irogers@google.com Signed-off-by: Namhyung Kim <namhyung@kernel.org>
alobakin
pushed a commit
that referenced
this pull request
Aug 4, 2025
Calling perf top with branch filters enabled on Intel CPU's with branch counters logging (A.K.A LBR event logging [1]) support results in a segfault. $ perf top -e '{cpu_core/cpu-cycles/,cpu_core/event=0xc6,umask=0x3,frontend=0x11,name=frontend_retired_dsb_miss/}' -j any,counter ... Thread 27 "perf" received signal SIGSEGV, Segmentation fault. [Switching to Thread 0x7fffafff76c0 (LWP 949003)] perf_env__find_br_cntr_info (env=0xf66dc0 <perf_env>, nr=0x0, width=0x7fffafff62c0) at util/env.c:653 653 *width = env->cpu_pmu_caps ? env->br_cntr_width : (gdb) bt #0 perf_env__find_br_cntr_info (env=0xf66dc0 <perf_env>, nr=0x0, width=0x7fffafff62c0) at util/env.c:653 #1 0x00000000005b1599 in symbol__account_br_cntr (branch=0x7fffcc3db580, evsel=0xfea2d0, offset=12, br_cntr=8) at util/annotate.c:345 #2 0x00000000005b17fb in symbol__account_cycles (addr=5658172, start=5658160, sym=0x7fffcc0ee420, cycles=539, evsel=0xfea2d0, br_cntr=8) at util/annotate.c:389 #3 0x00000000005b1976 in addr_map_symbol__account_cycles (ams=0x7fffcd7b01d0, start=0x7fffcd7b02b0, cycles=539, evsel=0xfea2d0, br_cntr=8) at util/annotate.c:422 #4 0x000000000068d57f in hist__account_cycles (bs=0x110d288, al=0x7fffafff6540, sample=0x7fffafff6760, nonany_branch_mode=false, total_cycles=0x0, evsel=0xfea2d0) at util/hist.c:2850 #5 0x0000000000446216 in hist_iter__top_callback (iter=0x7fffafff6590, al=0x7fffafff6540, single=true, arg=0x7fffffff9e00) at builtin-top.c:737 #6 0x0000000000689787 in hist_entry_iter__add (iter=0x7fffafff6590, al=0x7fffafff6540, max_stack_depth=127, arg=0x7fffffff9e00) at util/hist.c:1359 #7 0x0000000000446710 in perf_event__process_sample (tool=0x7fffffff9e00, event=0x110d250, evsel=0xfea2d0, sample=0x7fffafff6760, machine=0x108c968) at builtin-top.c:845 #8 0x0000000000447735 in deliver_event (qe=0x7fffffffa120, qevent=0x10fc200) at builtin-top.c:1211 #9 0x000000000064ccae in do_flush (oe=0x7fffffffa120, show_progress=false) at util/ordered-events.c:245 #10 0x000000000064d005 in __ordered_events__flush (oe=0x7fffffffa120, how=OE_FLUSH__TOP, timestamp=0) at util/ordered-events.c:324 #11 0x000000000064d0ef in ordered_events__flush (oe=0x7fffffffa120, how=OE_FLUSH__TOP) at util/ordered-events.c:342 #12 0x00000000004472a9 in process_thread (arg=0x7fffffff9e00) at builtin-top.c:1120 #13 0x00007ffff6e7dba8 in start_thread (arg=<optimized out>) at pthread_create.c:448 #14 0x00007ffff6f01b8c in __GI___clone3 () at ../sysdeps/unix/sysv/linux/x86_64/clone3.S:78 The cause is that perf_env__find_br_cntr_info tries to access a null pointer pmu_caps in the perf_env struct. A similar issue exists for homogeneous core systems which use the cpu_pmu_caps structure. Fix this by populating cpu_pmu_caps and pmu_caps structures with values from sysfs when calling perf top with branch stack sampling enabled. [1], LBR event logging introduced here: https://lore.kernel.org/all/20231025201626.3000228-5-kan.liang@linux.intel.com/ Reviewed-by: Ian Rogers <irogers@google.com> Signed-off-by: Thomas Falcon <thomas.falcon@intel.com> Link: https://lore.kernel.org/r/20250612163659.1357950-2-thomas.falcon@intel.com Signed-off-by: Namhyung Kim <namhyung@kernel.org>
alobakin
pushed a commit
that referenced
this pull request
Aug 5, 2025
When testing F2FS with xfstests using UFS backed virtual disks the kernel complains sometimes that f2fs_release_decomp_mem() calls vm_unmap_ram() from an invalid context. Example trace from f2fs/007 test: f2fs/007 5s ... [12:59:38][ 8.902525] run fstests f2fs/007 [ 11.468026] BUG: sleeping function called from invalid context at mm/vmalloc.c:2978 [ 11.471849] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 68, name: irq/22-ufshcd [ 11.475357] preempt_count: 1, expected: 0 [ 11.476970] RCU nest depth: 0, expected: 0 [ 11.478531] CPU: 0 UID: 0 PID: 68 Comm: irq/22-ufshcd Tainted: G W 6.16.0-rc5-xfstests-ufs-g40f92e79b0aa #9 PREEMPT(none) [ 11.478535] Tainted: [W]=WARN [ 11.478536] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 11.478537] Call Trace: [ 11.478543] <TASK> [ 11.478545] dump_stack_lvl+0x4e/0x70 [ 11.478554] __might_resched.cold+0xaf/0xbe [ 11.478557] vm_unmap_ram+0x21/0xb0 [ 11.478560] f2fs_release_decomp_mem+0x59/0x80 [ 11.478563] f2fs_free_dic+0x18/0x1a0 [ 11.478565] f2fs_finish_read_bio+0xd7/0x290 [ 11.478570] blk_update_request+0xec/0x3b0 [ 11.478574] ? sbitmap_queue_clear+0x3b/0x60 [ 11.478576] scsi_end_request+0x27/0x1a0 [ 11.478582] scsi_io_completion+0x40/0x300 [ 11.478583] ufshcd_mcq_poll_cqe_lock+0xa3/0xe0 [ 11.478588] ufshcd_sl_intr+0x194/0x1f0 [ 11.478592] ufshcd_threaded_intr+0x68/0xb0 [ 11.478594] ? __pfx_irq_thread_fn+0x10/0x10 [ 11.478599] irq_thread_fn+0x20/0x60 [ 11.478602] ? __pfx_irq_thread_fn+0x10/0x10 [ 11.478603] irq_thread+0xb9/0x180 [ 11.478605] ? __pfx_irq_thread_dtor+0x10/0x10 [ 11.478607] ? __pfx_irq_thread+0x10/0x10 [ 11.478609] kthread+0x10a/0x230 [ 11.478614] ? __pfx_kthread+0x10/0x10 [ 11.478615] ret_from_fork+0x7e/0xd0 [ 11.478619] ? __pfx_kthread+0x10/0x10 [ 11.478621] ret_from_fork_asm+0x1a/0x30 [ 11.478623] </TASK> This patch modifies in_task() check inside f2fs_read_end_io() to also check if interrupts are disabled. This ensures that pages are unmapped asynchronously in an interrupt handler. Fixes: bff139b ("f2fs: handle decompress only post processing in softirq") Signed-off-by: Jan Prusakowski <jprusakowski@google.com> Reviewed-by: Chao Yu <chao@kernel.org> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
I moved btf_id in generic structure layout because it was easier to get btf_id without adding all structure fields in this case. It is only temporary.
On my system xdp samples can't be build because of redefinition of BPF_F_BROADCAST and BPF_F_EXCLUDE_INGRESS in xdp_redirect_map_multi.bpf.c. I commented this two enums, but maybe this is only problem with my config, so I don't add this changes here.