-
Notifications
You must be signed in to change notification settings - Fork 594
Open
Labels
Description
MMYOLO Call for Proposals
在各个领域中 YOLO 系列改进算法众多,哪些改进的算法或者模块你觉得非常有用?欢迎在 Issue 中留言。我们会根据反馈列入开发计划当中。
Issue 回复模板
- 算法名:
- 发布的会议和年份(如有):
- 论文(如有):
- 数据集(如有):
- 简介(如有):
- 代码(如有):
- 相关解读(如有):
示例
- 算法名:TPH-YOLOv5
- 发布的会议和年份:ICCVW2021
- 论文:https://openaccess.thecvf.com/content/ICCV2021W/VisDrone/html/Zhu_TPH-YOLOv5_Improved_YOLOv5_Based_on_Transformer_Prediction_Head_for_Object_ICCVW_2021_paper.html
- 数据集:VisDrone2021
- 简介:YOLOv5 基础上增加
Transformer Prediction Heads (TPH)
和convolutional block attention model (CBAM)
,在 VisDrone2021 数据集上比 baseline YOLOv5 模型,精度提高 7% - 代码:https://github.com/cv516Buaa/tph-yolov5
- 相关解读:https://zhuanlan.zhihu.com/p/416171744
There are lots of improved algorithms in the YOLO series in various fields. Which improved algorithms or modules do you find useful? Feel free to leave your comments in the Issue. We will include them in the development plan based on the feedback.
Issue Reply Template
- Algorithm Name:
- Conference/Year(Optional):
- Paper(Optional):
- Datasets(Optional):
- Introduction(Optional):
- Repo(Optional):
- Interpretations(Optional):
Example
- Algorithm Name: TPH-YOLOv5
- Conference/Year: ICCVW2021
- Paper: https://openaccess.thecvf.com/content/ICCV2021W/VisDrone/html/Zhu_TPH-YOLOv5_Improved_YOLOv5_Based_on_Transformer_Prediction_Head_for_Object_ICCVW_2021_paper.html
- Datasets: VisDrone2021
- Introduction: Add
Transformer Prediction Heads (TPH)
andconvolutional block attention model (CBAM)
in YOLOv5, which improves the accuracy by 7% over the baseline YOLOv5 model on the VisDrone2021 dataset. - Repo: https://github.com/cv516Buaa/tph-yolov5
- Interpretations: https://zhuanlan.zhihu.com/p/416171744
根据大家反馈,我们会在下面维护一个列表,方便统一查看。
According to your feedback, we will maintain a list below.
Algorithm Name | Conference/Year | Paper | Datasets | Introduction | Repo | Interpretations |
---|---|---|---|---|---|---|
TPH-YOLOv5 | ICCVW2021 | link | VisDrone2021 | TPH/CBAM | Official | Zhihu1 |
YOLOV | 2022 | link | IMAGENET VID and DET | Official | ||
Loss: EFL | 2022 | link | LVIS v1 | EFL | Official | Zhihu1 |
CFPNet | 2022 | link | MS COCO | Centralized Feature Pyramid for Object Detection | Official | mmyolo |
YOLOP | 2022 | link | BDD100K | You Only Look at Once for Panoptic driving Perception | Official | Zhihu1 |
YOLO-Pose | 2022 | link | COCO Keypoint | Enhancing YOLO for Multi Person Pose Estimation Using Object Keypoint Similarity Loss | Official | Zhihu1 |
Edge-YOLO | 2023 | link | COCO and Visdrone | EdgeYOLO: An Edge-Real-Time Object Detector | Official | |
YOLO-NAS | 2023 | MS COCO | A Next-Generation, Object Detection Foundational Model generated by Deci’s Neural Architecture Search Technology | Official | Zhihu1 | |
YOLO-MS | 2023 | link | MS COCO | Rethinking Multi-Scale Representation Learning for Real-time Object Detectionblock | Official | Weixin |
hhaAndroid, triple-Mu, Nioolek, imAzhou, PeterH0323 and 6 morehhaAndroid, PeterH0323 and matrixgame2018hhaAndroid, PeterH0323, matrixgame2018 and debapriyamajihhaAndroid, PeterH0323 and matrixgame2018