forked from ggml-org/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
Update mradermacher with master #6
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Splits producing more than one ubatch per batch for recurrent models were broken with ggml-org#14512. This fixes it by moving the completeness check after the ubatch split loop.
* Init - first pass. * Model -> ModelBase. * fix errors in conversion. * Update the graph. * up. * up. * wip * cgraph ok * rm redundant code --------- Co-authored-by: Vaibhavs10 <vaibhavs10@gmail.com>
Signed-off-by: stevenkuang <stevenkuang@tencent.com>
* vulkan: allow FA split_k with smaller KV values * vulkan: spread split_k_reduce work across more threads k_num can get rather large. Use the whole workgroup to reduce the M/L values. Launch a thread for each element in the HSV dimension of the output. Helps a lot for large HSV (like deepseek).
* v1 * push more fixes * another fix * fix * more fixes * minor fix * more cleaning on python code * python fixes * changed precision for multipliers float 32->64 * fixes * another fix * fix * pre-norm -> norm * fix * Revert "fix" This reverts commit 243e4d1. * fix * small fix ffn_norm * try * mix instead of max * fix vocab size * conflict solve * fixed multipliers * falcon-h1 specefic vocab resolved * read arch from gguf.MODEL_ARCH * mamba_d_ssm added to d_inner find_hparam * remove unused functions from gguf_writer.py * override modify_tensors instead of get_tensors * fix conversion and d_inner * added some cb functions for debugging puposes * inp_out_ids moved outside of layers loop * mup_vec create as float64 * fix rope_theta * injected mup * clean ups * rm extra space * rm unused MAMBA_CHUNK_SIZE * rm unused key * add bos False * changed ROPE_TYPE * cleaning debugging stuff * cleaning debug quant * fix comment * some cleanups * some cleanups * Update src/llama-model-loader.cpp * more cleanups * moe cleanuips * d_ssm -> d_inner; * cleaning unused hparams * cleanup * more cleanups * more cleanups on python conversion; * minor cleanups * Apply suggestions from code review Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * remove todo * added falcon-h1 * tensor not required * clean * remove unneeded attributes * more cleanups and fixed conversion * remove final_norm * flake8 fixes * Update src/llama-model.cpp Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * flake8 fixes * Update src/llama-hparams.cpp Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Update src/llama-model.cpp Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Update src/llama-model.cpp Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Update src/llama-arch.cpp Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Update convert_hf_to_gguf.py Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * added hashes * Update src/llama-arch.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update src/llama-vocab.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * update the update file * Revert "update the update file" This reverts commit 082ab4a. * fix: address suggestions * fix: update convert_hf_to_gguf.py * Update gguf-py/gguf/constants.py Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Update src/llama-model-loader.cpp Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * d_inner fixed * Update src/llama-model.cpp Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * reshaping ssm_norm for 34B * removing generate_mup * remove duplicates metadata keys * rm comment * final comment * fix unused args * fix constants * fix bad merge * Update src/llama-model.cpp Co-authored-by: compilade <git@compilade.net> * falcon-h1: remove unused ssm_in_b and bad merge * Update src/llama-model.cpp Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * falcon-h1: fix last comment * Update convert_hf_to_gguf.py Co-authored-by: compilade <git@compilade.net> * falcon-h1: revert add_add_bos(False) * falcon-h1: fix tied weights * falcon-h1: remove whitespace * falcon-h1: fix wrong size param * falcon-h1: fix whitespace issues --------- Co-authored-by: younesbelkada <younes.belkada@tii.ae> Co-authored-by: Younes B <49240599+younesbelkada@users.noreply.github.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> Co-authored-by: compilade <git@compilade.net>
* ggml : add ggml_scale_bias * ggml_vec_mad1_f32 * add more simd * add CUDA * sycl * vulkan * cann (placeholder) * opencl * will this fix cpu? * fix cuda * suggestions from coderabbit * fix cann compile error * vDSP_vsmsa * rm __ARM_FEATURE_SVE * use memcpy for op params * make code looks more consistent * use scalar for __ARM_FEATURE_SVE * add x param to ggml_vec_mad1_f32
* wip: llama : separate recurrent states from the KV cache This will be necessary to support Jamba (and other recurrent models mixed with Attention). Doesn't compile yet, and finding a slot isn't yet done correctly for recurrent states. * llama : use std::find for seq_nodes in llama_rs_cache * llama : state checkpoints for recurrent models * llama : correctly handle more edge cases for the rs cache * llama : rename many llama_kv_cache_* functions * llama : remove useless return value for some llama_cache_* functions * llama : rethink recurrent state cell counts * llama : begin work on support for variable GQA This will also be useful for Jamba if we consider the Mamba layers to have 0 KV heads. * llama : gracefully fail when not finding hybrid slot * llama : support Jamba * llama : fix BERT inference without KV cache * convert-hf : check for unprocessed Jamba experts * convert-hf : support Mini-Jamba conversion * llama : fix Jamba quantization sanity checks * llama : sequence-length-aware batch splitting * llama : use equal-sequence-length sub-batches for recurrent models * ggml : simplify SSM-related operators * llama : make recurrent state slot allocation contiguous * llama : adapt internal uses of batches to llama_ubatch * llama : fix batch split output count for embeddings * llama : minimize swaps when reordering logits This reduces overhead when running hellaswag on thousands of sequences with very small 100k params Mamba models. * llama : fix edge case finding batch seq_id of split recurrent cell This otherwise was a problem when running the HellaSwag benchmark with small batch sizes, making it crash. * llama : avoid copies for simple batch splits * ggml : make ggml_ssm_scan not modify its source tensors * llama : fix shared recurrent tail cell count for small ubatch sizes Otherwise it was impossible to run the 'parallel' example with '-ub 1' with a Mamba or Jamba model. * llama : fix .base() compilation error on Windows * llama : allow doing the equivalent of SSM_CONV with SUM_ROWS and MUL * ggml : allow GGML_OP_CONCAT to work on non-contiguous tensors The implementation already supported it, and this makes Mamba's conv step slightly faster. * mamba : fix non-contiguous usage of ggml_silu * llama : session saving and reloading for hybrid models * convert_hf : fix Jamba conversion * llama : fix mixed signedness comparison * llama : use unused n_embd_k_gqa in k_shift This also slightly reduces the diff from the master branch * llama : begin renaming llama_past back to llama_kv_cache * llama : remove implicit recurrent state rollbacks * llama : partially apply clang-format style * convert : fix jamba conv1d shape squeezing * graph : add back hybrid memory graph input But this time it contains the sub-cache graph inputs. This *should* make it easier to handle updating the inputs when caching the graph (eventually). * model : add Jamba to Mamba-specific hparams printing * jamba : remove redundant nullptr initializations * model : remove unnecessary prefix for tensor loading constants Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * model : use ggml_swiglu_split for Mamba Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * model : make falcon-h1 use shared mamba2 layer builder * memory : avoid referring to KV in recurrent cache logs * gguf-py : avoid adding duplicate tensor mappings for Jamba Some of the tensor names are common with Llama4 --------- Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
nicoboss
pushed a commit
that referenced
this pull request
Aug 5, 2025
* oai moe * compat with new checkpoint * add attn sink impl * add rope scaling yarn * logits match with latest transformers code * wip chat template * rm trailing space * use ggml_scale_bias * rm redundant is_swa_all * convert interleaved gate_up * graph : fix activation function to match reference (#7) * vocab : handle o200k_harmony special tokens * ggml : add attention sinks support (#1) * llama : add attn sinks * ggml : add attn sinks * cuda : add attn sinks * vulkan : add support for sinks in softmax remove unnecessary return * ggml : add fused swiglu_oai op (ggml-org#11) * ggml : add fused swiglu_oai op * Update ggml/src/ggml-cpu/ops.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * update CUDA impl * cont : metal impl * add vulkan impl * test-backend-ops : more test cases, clean up * llama : remove unfused impl * remove extra lines --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: slaren <slarengh@gmail.com> * repack mxfp4 upon conversion * clean up a bit * enable thinking * add quick hack to render only some special tokens * fix bf16 conversion * remove vocab hack * webui ok * support chat parsing for gpt-oss * fix webui * direct mapping mxfp4, FINALLY * force using mxfp4 * properly use lazy tensor * ggml : add mxfp4 ggml : use e8m0 conversion instead of powf Co-authored-by: Diego Devesa <slarengh@gmail.com> change kvalues_mxfp4 table to match e2m1 (#6) metal : remove quantization for now (not used) cuda : fix disabled CUDA graphs due to ffn moe bias vulkan : add support for mxfp4 cont : add cm2 dequant * ggml : add ggml_add_id (ggml-org#13) * ggml : add ggml_add_id * add cuda impl * llama : add weight support check for add_id * perf opt * add vulkan impl * rename cuda files * add metal impl * allow in-place ggml_add_id * llama : keep biases on CPU with --cpu-moe * llama : fix compile error ggml-ci * cuda : add fallback for __nv_cvt_e8m0_to_bf16raw ggml-ci * cleanup ggml-ci * sycl : fix supports_op for MXFP4 ggml-ci * fix Unknown reasoning format * ggml-cpu : fix AVX build ggml-ci * fix hip build ggml-ci * cuda : add mxfp4 dequantization support for cuBLAS ggml-ci * ggml-cpu : fix mxfp4 fallback definitions for some architectures ggml-ci * cuda : fix version required for __nv_cvt_e8m0_to_bf16raw --------- Co-authored-by: Xuan Son Nguyen <son@huggingface.co> Co-authored-by: slaren <slarengh@gmail.com>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
No description provided.