-
Notifications
You must be signed in to change notification settings - Fork 451
Closed
Labels
bugSomething isn't workingSomething isn't working
Description
Environment
$ composer_collect_env
Collecting system information...
---------------------------------
System Environment Report
Created: 2023-02-21 11:21:52 CET
---------------------------------
PyTorch information
-------------------
PyTorch version: 2.0.0.dev20230127+cu118
Is debug build: False
CUDA used to build PyTorch: 11.8
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.1 LTS (x86_64)
GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0
Clang version: Could not collect
CMake version: version 3.25.0
Libc version: glibc-2.35
Python version: 3.10.6 (main, Nov 14 2022, 16:10:14) [GCC 11.3.0] (64-bit runtime)
Python platform: Linux-5.15.0-58-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.0.140
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA GeForce GTX 1080 Ti
Nvidia driver version: 525.85.12
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.7.6.5
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.8.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.8.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.8.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.8.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.8.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.8.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.8.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
Versions of relevant libraries:
[pip3] mypy-extensions==0.4.3
[pip3] numpy==1.22.4
[pip3] numpy-quaternion==2022.4.2
[pip3] pytorch-ranger==0.1.1
[pip3] pytorch-triton==2.0.0+0d7e753227
[pip3] torch==2.0.0.dev20230127+cu118
[pip3] torch-optimizer==0.3.0
[pip3] torch-tensorrt==1.4.0.dev0+18ba2cb0
[pip3] torchaudio==2.0.0.dev20230127+cu118
[pip3] torchmetrics==0.9.3
[pip3] torchsummary==1.5.1
[pip3] torchvision==0.15.0.dev20230127+cu118
[conda] Could not collect
Composer information
--------------------
Composer version: 0.12.0
Composer commit hash: None
Host processor model name: Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz
Host processor core count: 4
Number of nodes: 1
Accelerator model name: NVIDIA GeForce GTX 1080 Ti
Accelerators per node: 1
CUDA Device Count: 1
To reproduce
Attempting to quantise a model with Torch FX graph mode post-training dynamic quantisation (https://pytorch.org/docs/stable/quantization.html#prototype-fx-graph-mode-quantization) that has had blurpool applied to it causes the exception
symbolically traced variables cannot be used as inputs to control flow
https://pytorch.org/docs/stable/fx.html#dynamic-control-flow
This is due to the shape of the filter being dependent on the input shape (n_in_channels
, h
and w
) in blur_2d
.
Here is a small script for reproducing the bug: blurpool_quantisation_bug.py.txt
Expected behavior
Applying the blurpool operator to a model should not break symbolic tracing due to dynamic flow control.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working