Skip to content

mona4399/FeatureMixing

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Extremely Simple Multimodal Outlier Synthesis for Out-of-Distribution Detection and Segmentation

1Technical University of Munich, 2ETH Zurich, 3Fraunhofer IKS, 4EPFL

arXiv 2025


Feature Mixing randomly selects a subset of N feature dimensions from each modality and swaps them to obtain new features, which are then concatenated to form the multimodal outlier features.

Code

An Example of Feature Mixing in 1D and 2D

featuremixing_example_1D_2D.py 

Multimodal OOD Detection

Follow the instructions in MultiOOD to prepare the dataset and setup the environments.

HMDB51 as ID

cd OOD_detection/HMDB-rgb-flow/

Train the Far-OOD model using A2D and Feature Mixing for HMDB:

python train_video_flow.py --dataset 'HMDB' --lr 0.0001 --seed 0 --bsz 16 --num_workers 10 --use_single_pred --use_a2d --a2d_max_hellinger --a2d_ratio 0.1 --use_featuremixing --max_ood_hellinger --a2d_ratio_ood 1.0 --ood_entropy_ratio 1.0 --nepochs 50 --appen '' --save_best --save_checkpoint --datapath '/path/to/HMDB51/' 

Save the evaluation files for HMDB:

python test_video_flow.py --bsz 16 --num_workers 2 --dataset 'HMDB' --appen 'a2d_fm_best_' --resumef '/path/to/model_best.pt'

Save the evaluation files for UCF:

python test_video_flow.py --bsz 16 --num_workers 2 --far_ood --dataset 'HMDB' --ood_dataset 'UCF' --appen 'a2d_fm_best_' --resumef '/path/to/model_best.pt'

Save the evaluation files for HAC:

python test_video_flow.py --bsz 16 --num_workers 2 --far_ood --dataset 'HMDB' --ood_dataset 'HAC' --appen 'a2d_fm_best_' --resumef '/path/to/model_best.pt'

Save the evaluation files for Kinetics:

python test_video_flow.py --bsz 16 --num_workers 2 --far_ood --dataset 'HMDB' --ood_dataset 'Kinetics' --appen 'a2d_fm_best_' --resumef '/path/to/model_best.pt'

Save the evaluation files for EPIC:

cd OOD_detection/EPIC-rgb-flow/
python test_video_flow_epic.py --bsz 16 --num_workers 2 --far_ood --dataset 'HMDB' --ood_dataset 'EPIC' --appen 'a2d_fm_best_' --resumef '/path/to/model_best.pt'

Evaluation for UCF (change --ood_dataset to UCF, EPIC, HAC, or Kinetics):

python eval_video_flow_far_ood.py --postprocessor ebo --appen 'a2d_fm_best_' --dataset 'HMDB' --ood_dataset 'UCF' --path 'HMDB-rgb-flow/'

Multimodal OOD Segmentation

The code and dataset for OOD Segmentation will be available soon.

Citation

If you find our work useful in your research please consider citing our paper:

@article{liu2025fm,
    title={Extremely Simple Multimodal Outlier Synthesis for Out-of-Distribution Detection and Segmentation},
    author={Liu, Moru and Dong, Hao and Kelly, Jessica and Fink, Olga and Trapp, Mario},
    journal={arXiv preprint arXiv:2505.16985},
    year={2025}
}

Related Projects

MultiOOD: Scaling Out-of-Distribution Detection for Multiple Modalities

DPU: Dynamic Prototype Updating for Multimodal Out-of-Distribution Detection

NNG-Mix: Improving Semi-supervised Anomaly Detection with Pseudo-anomaly Generation

Survey: Advances in Multimodal Adaptation and Generalization: From Traditional Approaches to Foundation Models

Acknowledgement

Many thanks to the open-source projects SimMMDG and MultiOOD.

About

Extremely Simple Multimodal Outlier Synthesis for Out-of-Distribution Detection and Segmentation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published