Skip to content

ma-xu/PRM

Repository files navigation

PRM

Position-Aware Recalibration Module: Learning From Feature Semantics and Feature Position, by Xu Ma, Song Fu, is a novel plug-in module for improve CNN model capability with minimal computational overheads, and further improve the performances of other high-level visual tasks, like detection.

PRM_module

Getting Start

Installation

1. Download repo

git clone https://github.com/13952522076/PRM.git
cd PRM

2. Requirements

  • Python3.6
  • PyTorch 1.3+
  • CUDA 10+
  • GCC 5.0+
pip install -r requirements.txt

3. Install DALI and Apex (For ImageNet Training)

DALI Installation:

cd ~
# For CUDA10
pip install --extra-index-url https://developer.download.nvidia.com/compute/redist nvidia-dali-cuda100
# or
# For CUDA11
pip install --extra-index-url https://developer.download.nvidia.com/compute/redist nvidia-dali-cuda110

For more details, please see Nvidia DALI installation.

Apex Installation:

cd ~
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

For more details, please see Apex or Apex Full API documentation.

Training & Testing ImageNet

# change the parameters accordingly if necessary
# e.g, If you have 4 GPUs, set the nproc_per_node to 4. If you want to train with 32FP, remove ----fp16.
python3 -m torch.distributed.launch --nproc_per_node=8 imagenet.py -a prm_resnet50 --fp16 --b 32

Reference

If you find this work useful in your research, you can cite the corresponding papers listed below:

@inproceedings{ma2020position,
  title={Position-Aware Recalibration Module: Learning From Feature Semantics and Feature Position},
  author={Ma, Xu and Fu, Song},
  booktitle={Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence},
  year={2020}
}

About

IJCAI 2020

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages