Welcome to my bilingual machine learning repository!
Here you'll find concise cheatsheets, theoretical summaries, and hands-on tutorials for the most important ML algorithms – available in both English and Polish 🇬🇧🇵🇱.
Witam w moim dwujęzycznym repozytorium uczenia maszynowego!
Znajdziesz tu zwięzłe ściągawki, podstawy teoretyczne i praktyczne tutoriale najważniejszych algorytmów ML – dostępne po angielsku i po polsku 🇬🇧🇵🇱.
Welcome to the Machine Learning Cheatsheet Repository – a structured collection of short, practical tutorials and summaries of popular ML algorithms.
Each algorithm comes with a separate folder containing:
README.md
– description, theory, use cases, pros & constutorial.ipynb
– a Jupyter Notebook with hands-on code examplesreferences.md
– useful links, documentation, and papers
We provide materials in two languages:
- Linear Regression
- Logistic Regression
- Decision Tree
- Random Forest
- Gradient Boosting
- Support Vector Machine (SVM)
- k-Nearest Neighbors (KNN)
- Naive Bayes
- K-Means Clustering
- Hierarchical Clustering
- Principal Component Analysis (PCA)
- Multi-Layer Perceptron (MLP)
- Convolutional Neural Networks (CNN)
- Recurrent Neural Networks (RNN)
- Transformer-based Models (BERT, GPT)
- Autoencoders
- DBSCAN
- Gaussian Mixture Models (GMM)
We welcome contributions!
You can:
- Add new tutorials or notebooks
- Improve descriptions or add references
- Translate content between PL/ENG
- Suggest new models or techniques
Please open a pull request or issue to join us!
This project is licensed under the MIT License.
Created with passion by [Tymoteusz Miller / University of Szczecin / AI Impact Hub].
Let’s make machine learning more accessible, one model at a time!