This repository contains Pytorch implementation of MMNR:
Multi-view Multi-aspect Neural Networks for Next-basket Recommendation. Zhiying Deng, Jianjun Li, Zhiqiang Guo, Wei Liu, Li Zou, Guohui Li. The 46th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2023).
MMNR employs normalization to balance the number of interactions from user and item views, ensuring adequate representation and eliminating the bias caused by differences in interactions. Additionally, MMNR considers the fine-grained context of the item, enabling the modeling of its diverse features across multiple aspects and facilitating comprehensive analysis.
- torch 1.10.1+cuda 11.2
- python 3.6.13
- numpy 1.19.5
- scipy 1.5.4
- scikit-learn 0.23.2
create folder ./src/his/seq/his_test/TaFeng
$ cd src
$ python main.py --dataset TaFeng --lr 0.01 --l2 0.001 --asp 11 --ctx 3 --decay 0.6 --h1 5 --h2 5 --batch_size 100 --dim 32 --isTrain 0
$ python main.py --dataset Dunnhumby --lr 0.001 --l2 0.01 --asp 14 --ctx 3 --decay 0.6 --h1 5 --h2 5 --batch_size 100 --dim 32 --isTrain 0
$ python main.py --dataset ValuedShopper --lr 0.01 l2 0.01 --asp 13 --ctx 3 --decay 0.6 --h1 5 --h2 5 --batch_size 100 --dim 32 --isTrain 0
$ python main.py --dataset RetailRocket --lr 0.01 l2 0.01 --asp 15 --ctx 3 --decay 0.6 --h1 5 --h2 5 --batch_size 100 --dim 32 --isTrain 0
@inproceedings{DBLP:conf/sigir/DengLGLZL23,
author = {Zhiying Deng and
Jianjun Li and
Zhiqiang Guo and
Wei Liu and
Li Zou and
Guohui Li},
title = {Multi-view Multi-aspect Neural Networks for Next-basket Recommendation},
booktitle = {Proceedings of the 46th International {ACM} {SIGIR} Conference on
Research and Development in Information Retrieval, {SIGIR} 2023, Taipei,
Taiwan, July 23-27, 2023},
pages = {1283--1292},
year = {2023},
}