Skip to content

Why the bias at FPN upsamle conv is 'True'? #7

@Yishun99

Description

@Yishun99

globalNet.py

    def _upsample(self):
        layers = []
        layers.append(torch.nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True))
        layers.append(torch.nn.Conv2d(256, 256,
            kernel_size=1, stride=1, bias=True))
        layers.append(nn.BatchNorm2d(256))

        return nn.Sequential(*layers)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions