Skip to content

GXNU-ZhongLab/SGLATrack

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

[CVPR'2025] - SGLATrack

The official implementation for the CVPR 2025 paper

[Similarity-Guided Layer-Adaptive Vision Transformer for UAV Tracking]

[Models], [Raw Results]

🌟 Performance on Aerial Datasets

Tracker UAV123 (AUC) UAV123_10FPS (AUC) UAVDT (AUC) DTB70 (AUC) UAVTrack112 (AUC) UAVTrack_L (AUC)
SGLATrack-DeiT* 66.9 65.5 59.9 65.1 67.5 64.0
SGLATrack-ViT 66.1 64.5 60.0 65.8 67.3 64.3
SGLATrack-EVA 65.1 64.3 57.9 63.8 66.9 64.7

🌟 Performance on Generic Datasets

Tracker TrackingNet (AUC) LaSOT (AUC) GOT-10k (AO)
SGLATrack-DeiT* 79.5 63.0 66.3
SGLATrack-ViT 79.4 64.1 66.0
SGLATrack-EVA 77.7 60.9 64.2

Training Data Preparation

Put the training datasets in ./data. It should look like:

${PROJECT_ROOT}
 -- data
     -- lasot
         |-- airplane
         |-- basketball
         |-- bear
         ...
     -- got10k
         |-- test
         |-- train
         |-- val
     -- coco
         |-- annotations
         |-- images
     -- trackingnet
         |-- TRAIN_0
         |-- TRAIN_1
         ...
         |-- TRAIN_11
         |-- TEST

Test Data Preparation

For ease of testing, we have made the structured dataset available for download at here, code: 5vbv.

Put the test datasets in ./data. It should look like:

${PROJECT_ROOT}
 -- data
     -- UAV123
         |-- anno
         |-- data_seq
     -- UAV123_10fps
         |-- anno
         |-- data_seq
     -- uavdt
         |-- anno
         |-- sequences
     -- V4RFlight112
         |-- anno
         |-- anno_l
         |-- data_seq
         |-- attributes
     -- DTB70
         |-- Animal1
         |-- Animal2
         ...
     -- VisDrone2018-SOT-test-dev
         |-- annotations
         |-- sequences
         |-- attributes

Set project paths

Run the following command to set paths for this project

python tracking/create_default_local_file.py --workspace_dir . --data_dir ./data --save_dir ./output

After running this command, you can also modify paths by editing these two files

lib/train/admin/local.py  # paths about training
lib/test/evaluation/local.py  # paths about testing

Training

Download pre-trained DeiT-tiny distilled weights and put it under $PROJECT_ROOT$/pretrained_models

python tracking/train.py \
--script sglatrack --config deit_distilled \
--save_dir ./output \
--mode multiple --nproc_per_node 4 \
--use_wandb 0

Replace --config with the desired model config under experiments/sglatrack.

We use wandb to record detailed training logs, in case you don't want to use wandb, set --use_wandb 0.

Test and Evaluation

  • UAV123 or other off-line evaluated benchmarks (modify --dataset correspondingly)
python tracking/test.py --tracker_param sglatrack --dataset uav123 --threads 8 --num_gpus 4
python tracking/analysis_results.py # need to modify tracker configs and names
  • uav123_10fps
python tracking/test.py  --tracker_param sglatrack --dataset uav123_10fps --threads 8 --num_gpus 4
  • uavtrack_L
python tracking/test.py  --tracker_param sglatrack --dataset uavtrack --threads 8 --num_gpus 4
  • uavtrack112
python tracking/test.py  --tracker_param sglatrack --dataset uavtrack112 --threads 8 --num_gpus 4
  • uavdt
python tracking/test.py  --tracker_param sglatrack --dataset uavdt --threads 8 --num_gpus 4
  • dtb70
python tracking/test.py  --tracker_param sglatrack --dataset dtb70 --threads 8 --num_gpus 4
  • visdrone
python tracking/test.py  --tracker_param sglatrack --dataset visdrone --threads 8 --num_gpus 4

Test FLOPs, and Speed

Note: The speeds reported in our paper were tested on a single RTX2080Ti GPU.

python tracking/profile_model.py

Contact

For any questions or cooperation, please contact xcc23cg@163.com or wechat: chaocan23

Acknowledgments

  • Thanks for the OSTrack and AVTrack library, which helps us to quickly implement our ideas.

Citation

If our work is useful for your research, please consider citing:

@inproceedings{sglatrack,
  title={Similarity-Guided Layer-Adaptive Vision Transformer for UAV Tracking},
  author={Xue, Chaocan and Zhong, Bineng and Liang, Qihua and Zheng, Yaozong and Li, Ning and Xue, Yuanliang and Song, Shuxiang},
    booktitle = {Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR)},
    month     = {June},
    year      = {2025},
    pages     = {6730-6740}
}

About

Similarity-Guided Layer-Adaptive Vision Transformer for UAV Tracking (CVPR 2025)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published