MCPOmni Connect is the complete AI platform that evolved from a world-class MCP client into a revolutionary ecosystem. It now includes OmniAgent - the ultimate AI agent builder born from MCPOmni Connect's powerful foundation. Build production-ready AI agents, use the advanced MCP CLI, or combine both for maximum power.
- π Quick Start (2 minutes)
- π What is MCPOmni Connect?
- π‘ What Can You Build? (Examples)
- π― Choose Your Path
New to MCPOmni Connect? Get started in 2 minutes:
# Install with uv (recommended)
uv add mcpomni-connect
# Or with pip
pip install mcpomni-connect
# Create .env file with your LLM API key
echo "LLM_API_KEY=your_openai_api_key_here" > .env
# Try the basic MCP client
python examples/basic.py
# Or try OmniAgent with custom tools
python examples/omni_agent_example.py
# Or use the advanced MCP CLI
python examples/run.py
- Custom AI Agents: Register your Python functions as AI tools
- MCP Integration: Connect to any Model Context Protocol server
- Smart Memory: Vector databases for long-term AI memory
- Background Agents: Self-flying autonomous task execution
- Production Monitoring: Opik tracing for performance optimization
β‘οΈ Next: Check out Examples or jump to Configuration Guide
Born from MCPOmni Connect's foundation - create intelligent, autonomous agents with:
- π οΈ Local Tools System - Register your Python functions as AI tools
- π Self-Flying Background Agents - Autonomous task execution
- π§ Multi-Tier Memory - Vector databases, Redis, PostgreSQL, MySQL, SQLite
- π‘ Real-Time Events - Live monitoring and streaming
- π§ MCP + Local Tool Orchestration - Seamlessly combine both tool types
Advanced command-line interface for connecting to any Model Context Protocol server with:
- π Multi-Protocol Support - stdio, SSE, HTTP, Docker, NPX transports
- π Authentication - OAuth 2.0, Bearer tokens, custom headers
- π§ Advanced Memory - Redis, Database, Vector storage with intelligent retrieval
- π‘ Event Streaming - Real-time monitoring and debugging
- π€ Agentic Modes - ReAct, Orchestrator, and Interactive chat modes
π― Perfect for: Developers who want the complete AI ecosystem - build custom agents AND have world-class MCP connectivity.
π Introducing OmniAgent - A revolutionary AI agent system that brings plug-and-play intelligence to your applications!
- π§ Multi-tier memory management with vector search and semantic retrieval
- π οΈ XML-based reasoning with strict tool formatting for reliable execution
- π§ Advanced tool orchestration - Seamlessly combine MCP server tools + local tools
- π Self-flying background agents with autonomous task execution
- π‘ Real-time event streaming for monitoring and debugging
- ποΈ Production-ready infrastructure with error handling and retry logic
- β‘ Plug-and-play intelligence - No complex setup required!
- π― Easy Tool Registration:
@tool_registry.register_tool("tool_name")
- π Custom Tool Creation: Register your own Python functions as AI tools
- π Runtime Tool Management: Add/remove tools dynamically
- βοΈ Type-Safe Interface: Automatic parameter validation and documentation
- π Rich Examples: Study
run_omni_agent.py
for 12+ EXAMPLE tool registration patterns
# Basic MCP client usage - Simple connection patterns
python examples/basic.py
# Advanced MCP CLI - Full-featured client interface
python examples/run.py
# Complete OmniAgent demo - All features showcase
python examples/omni_agent_example.py
# Advanced OmniAgent patterns - Study 12+ tool examples
python examples/run_omni_agent.py
# Self-flying background agents - Autonomous task execution
python examples/background_agent_example.py
# FastAPI implementation - Clean API endpoints
python examples/fast_api_iml.py
# Web server with UI - Interactive interface for OmniAgent
python examples/web_server.py
# Open http://localhost:8000 for web interface
All LLM provider examples consolidated in:
# See examples/llm_usage-config.json for:
# - Anthropic Claude models
# - Groq ultra-fast inference
# - Azure OpenAI enterprise
# - Ollama local models
# - OpenRouter 200+ models
# - And more providers...
π Want to start building right away? Jump to Quick Start | Examples | Configuration
- ReAct Agent Mode
- Autonomous task execution with reasoning and action cycles
- Independent decision-making without human intervention
- Advanced problem-solving through iterative reasoning
- Self-guided tool selection and execution
- Complex task decomposition and handling
- Orchestrator Agent Mode
- Strategic multi-step task planning and execution
- Intelligent coordination across multiple MCP servers
- Dynamic agent delegation and communication
- Parallel task execution when possible
- Sophisticated workflow management with real-time progress monitoring
- Interactive Chat Mode
- Human-in-the-loop task execution with approval workflows
- Step-by-step guidance and explanations
- Educational mode for understanding AI decision processes
- Multi-Protocol Support
- Native support for stdio transport
- Server-Sent Events (SSE) for real-time communication
- Streamable HTTP for efficient data streaming
- Docker container integration
- NPX package execution
- Extensible transport layer for future protocols
- Authentication Support
- OAuth 2.0 authentication flow
- Bearer token authentication
- Custom header support
- Secure credential management
- Agentic Operation Modes
- Seamless switching between chat, autonomous, and orchestrator modes
- Context-aware mode selection based on task complexity
- Persistent state management across mode transitions
- Unified LLM Integration with LiteLLM
- Single unified interface for all AI providers
- Support for 100+ models across providers including:
- OpenAI (GPT-4, GPT-3.5, etc.)
- Anthropic (Claude 3.5 Sonnet, Claude 3 Haiku, etc.)
- Google (Gemini Pro, Gemini Flash, etc.)
- Groq (Llama, Mixtral, Gemma, etc.)
- DeepSeek (DeepSeek-V3, DeepSeek-Coder, etc.)
- Azure OpenAI
- OpenRouter (access to 200+ models)
- Ollama (local models)
- Simplified configuration and reduced complexity
- Dynamic system prompts based on available capabilities
- Intelligent context management
- Automatic tool selection and chaining
- Universal model support through custom ReAct Agent
- Handles models without native function calling
- Dynamic function execution based on user requests
- Intelligent tool orchestration
- Explicit User Control
- All tool executions require explicit user approval in chat mode
- Clear explanation of tool actions before execution
- Transparent disclosure of data access and usage
- Data Protection
- Strict data access controls
- Server-specific data isolation
- No unauthorized data exposure
- Privacy-First Approach
- Minimal data collection
- User data remains on specified servers
- No cross-server data sharing without consent
- Secure Communication
- Encrypted transport protocols
- Secure API key management
- Environment variable protection
- Multi-Backend Memory Storage
- In-Memory: Fast development storage
- Redis: Persistent memory with real-time access
- Database: PostgreSQL, MySQL, SQLite support
- File Storage: Save/load conversation history
- Runtime switching:
/memory_store:redis
,/memory_store:database:postgresql://user:pass@host/db
- Multi-Tier Memory Strategy
- Short-term Memory: Sliding window or token budget strategies
- Long-term Memory: Vector database storage for semantic retrieval
- Episodic Memory: Context-aware conversation history
- Runtime configuration:
/memory_mode:sliding_window:5
,/memory_mode:token_budget:3000
- **Vector Database Integration (NEW!)
- Multiple Provider Support: ChromaDB (local/remote/cloud) + Qdrant (remote)
- Smart Fallback: Automatic failover to local storage if remote fails
- Semantic Search: Intelligent context retrieval across conversations
- Long-term & Episodic Memory: Enable with
ENABLE_VECTOR_DB=true
β οΈ Startup Impact: 30-60s initial load (sentence transformer), then fast
- **Real-Time Event Streaming (NEW!)
- In-Memory Events: Fast development event processing
- Redis Streams: Persistent event storage and streaming
- Runtime switching:
/event_store:redis_stream
,/event_store:in_memory
- **Advanced Tracing & Observability (LATEST!)
- Opik Integration: Production-grade tracing and monitoring
- Real-time Performance Tracking: Monitor LLM calls, tool executions, and agent performance
- Detailed Call Traces: See exactly where time is spent in your AI workflows
- System Observability: Understand bottlenecks and optimize performance
- Open Source: Built on Opik, the open-source observability platform
- Easy Setup: Just add your Opik credentials to start monitoring
- Zero Code Changes: Automatic tracing with
@track
decorators - Performance Insights: Identify slow operations and optimization opportunities
- Opik Integration: Production-grade tracing and monitoring
- Advanced Prompt Handling
- Dynamic prompt discovery across servers
- Flexible argument parsing (JSON and key-value formats)
- Cross-server prompt coordination
- Intelligent prompt validation
- Context-aware prompt execution
- Real-time prompt responses
- Support for complex nested arguments
- Automatic type conversion and validation
- Client-Side Sampling Support
- Dynamic sampling configuration from client
- Flexible LLM response generation
- Customizable sampling parameters
- Real-time sampling adjustments
- Dynamic Tool Discovery & Management
- Automatic tool capability detection
- Cross-server tool coordination
- Intelligent tool selection based on context
- Real-time tool availability updates
- Universal Resource Access
- Cross-server resource discovery
- Unified resource addressing
- Automatic resource type detection
- Smart content summarization
- Advanced Server Handling
- Multiple simultaneous server connections
- Automatic server health monitoring
- Graceful connection management
- Dynamic capability updates
- Flexible authentication methods
- Runtime server configuration updates
π Prefer hands-on learning? Skip to Examples or Configuration
MCPOmni Connect Platform
βββ π€ OmniAgent System (Revolutionary Agent Builder)
β βββ Local Tools Registry
β βββ Background Agent Manager
β βββ Custom Agent Creation
β βββ Agent Orchestration Engine
βββ π Universal MCP Client (World-Class CLI)
β βββ Transport Layer (stdio, SSE, HTTP, Docker, NPX)
β βββ Multi-Server Orchestration
β βββ Authentication & Security
β βββ Connection Lifecycle Management
βββ π§ Shared Memory System (Both Systems)
β βββ Multi-Backend Storage (Redis, DB, In-Memory)
β βββ Vector Database Integration (ChromaDB, Qdrant)
β βββ Memory Strategies (Sliding Window, Token Budget)
β βββ Session Management
βββ π‘ Event System (Both Systems)
β βββ In-Memory Event Processing
β βββ Redis Streams for Persistence
β βββ Real-Time Event Monitoring
βββ π οΈ Tool Management (Both Systems)
β βββ Dynamic Tool Discovery
β βββ Cross-Server Tool Routing
β βββ Local Python Tool Registration
β βββ Tool Execution Engine
βββ π€ AI Integration (Both Systems)
βββ LiteLLM (100+ Models)
βββ Context Management
βββ ReAct Agent Processing
βββ Response Generation
Required:
- Python 3.10+
- LLM API key (OpenAI, Anthropic, Groq, etc.)
Optional (for advanced features):
- Redis (persistent memory)
- Vector DB (Support both Qdrant and ChromaDB)
- Database (PostgreSQL/MySQL/SQLite)
β οΈ Vector DB startup: 30-60s initial load time
# Option 1: UV (recommended - faster)
uv add mcpomni-connect
# Option 2: Pip (standard)
pip install mcpomni-connect
Minimal setup (get started immediately):
# Just set your API key - that's it!
echo "LLM_API_KEY=your_api_key_here" > .env
Advanced setup (optional features):
π Need more options? See the complete Configuration Guide below for all environment variables, vector database setup, memory configuration, and advanced features.
Path A: Build Custom Agents (OmniAgent)
python examples/omni_agent_example.py
Path B: Advanced MCP Client (CLI)
python examples/run.py
Path C: Web Interface
python examples/web_server.py
# Open http://localhost:8000
β‘ Quick Setup: Only need
LLM_API_KEY
to get started! | π Detailed Setup: Vector DB | Tracing
Create a .env
file with your configuration. Only the LLM API key is required - everything else is optional for advanced features.
# ===============================================
# REQUIRED: AI Model API Key (Choose one provider)
# ===============================================
LLM_API_KEY=your_openai_api_key_here
# OR for other providers:
# LLM_API_KEY=your_anthropic_api_key_here
# LLM_API_KEY=your_groq_api_key_here
# LLM_API_KEY=your_azure_openai_api_key_here
# See examples/llm_usage-config.json for all provider configs
# ===============================================
# Tracing & Observability (OPTIONAL) - NEW!
# ===============================================
# For advanced monitoring and performance optimization
# π Sign up: https://www.comet.com/signup?from=llm
OPIK_API_KEY=your_opik_api_key_here
OPIK_WORKSPACE=your_opik_workspace_name
# ===============================================
# Vector Database (OPTIONAL) - Smart Memory
# ===============================================
# β οΈ Warning: 30-60s startup time for sentence transformer
# β οΈ IMPORTANT: You MUST choose a provider - no local fallback
ENABLE_VECTOR_DB=true # Default: false
# Choose ONE provider (required if ENABLE_VECTOR_DB=true):
# Option 1: Qdrant Remote (RECOMMENDED)
OMNI_MEMORY_PROVIDER=qdrant-remote
QDRANT_HOST=localhost
QDRANT_PORT=6333
# Option 2: ChromaDB Remote
# OMNI_MEMORY_PROVIDER=chroma-remote
# CHROMA_HOST=localhost
# CHROMA_PORT=8000
# Option 3: ChromaDB Cloud
# OMNI_MEMORY_PROVIDER=chroma-cloud
# CHROMA_TENANT=your_tenant
# CHROMA_DATABASE=your_database
# CHROMA_API_KEY=your_api_key
# ===============================================
# Persistent Memory Storage (OPTIONAL)
# ===============================================
# These have sensible defaults - only set if you need custom configuration
# Redis - for memory_store_type="redis" (defaults to: redis://localhost:6379/0)
# REDIS_URL=redis://your-remote-redis:6379/0
# REDIS_URL=redis://:password@localhost:6379/0 # With password
# Database - for memory_store_type="database" (defaults to: sqlite:///mcpomni_memory.db)
# DATABASE_URL=postgresql://user:password@localhost:5432/mcpomni
# DATABASE_URL=mysql://user:password@localhost:3306/mcpomni
π‘ Quick Start: Just set
LLM_API_KEY
and you're ready to go! Add other variables only when you need advanced features.
For MCP server connections and agent settings:
MCPOmni Connect supports multiple ways to connect to MCP servers:
Use when: Connecting to local MCP servers that run as separate processes
{
"server-name": {
"transport_type": "stdio",
"command": "uvx",
"args": ["mcp-server-package"]
}
}
- No authentication needed
- No OAuth server started
- Most common for local development
Use when: Connecting to HTTP-based MCP servers using Server-Sent Events
{
"server-name": {
"transport_type": "sse",
"url": "http://your-server.com:4010/sse",
"headers": {
"Authorization": "Bearer your-token"
},
"timeout": 60,
"sse_read_timeout": 120
}
}
- Uses Bearer token or custom headers
- No OAuth server started
Use when: Connecting to HTTP-based MCP servers with or without OAuth
Without OAuth (Bearer Token):
{
"server-name": {
"transport_type": "streamable_http",
"url": "http://your-server.com:4010/mcp",
"headers": {
"Authorization": "Bearer your-token"
},
"timeout": 60
}
}
- Uses Bearer token or custom headers
- No OAuth server started
With OAuth:
{
"server-name": {
"transport_type": "streamable_http",
"auth": {
"method": "oauth"
},
"url": "http://your-server.com:4010/mcp"
}
}
- OAuth callback server automatically starts on
http://localhost:3000
- This is hardcoded and cannot be changed
- Required for OAuth flow to work properly
Important: When using OAuth authentication, MCPOmni Connect automatically starts an OAuth callback server.
π₯οΈ Started callback server on http://localhost:3000
- This is normal behavior - not an error
- The address
http://localhost:3000
is hardcoded and cannot be changed - The server only starts when you have
"auth": {"method": "oauth"}
in your config - The server stops when the application shuts down
- Only used for OAuth token handling - no other purpose
- Remove the entire
"auth"
section from your server configuration - Use
"headers"
with"Authorization": "Bearer token"
instead - No OAuth server will start
Possible Causes & Solutions:
-
Wrong Transport Type
Problem: Your server expects 'stdio' but you configured 'streamable_http' Solution: Check your server's documentation for the correct transport type
-
OAuth Configuration Mismatch
Problem: Your server doesn't support OAuth but you have "auth": {"method": "oauth"} Solution: Remove the "auth" section entirely and use headers instead: "headers": { "Authorization": "Bearer your-token" }
-
Server Not Running
Problem: The MCP server at the specified URL is not running Solution: Start your MCP server first, then connect with MCPOmni Connect
-
Wrong URL or Port
Problem: URL in config doesn't match where your server is running Solution: Verify the server's actual address and port
"Started callback server on http://localhost:3000" - Is This Normal?
Yes, this is completely normal when:
- You have
"auth": {"method": "oauth"}
in any server configuration - The OAuth server handles authentication tokens automatically
- You cannot and should not try to change this address
If you don't want the OAuth server:
- Remove
"auth": {"method": "oauth"}
from all server configurations - Use alternative authentication methods like Bearer tokens
{
"mcpServers": {
"local-tools": {
"transport_type": "stdio",
"command": "uvx",
"args": ["mcp-server-tools"]
}
}
}
{
"mcpServers": {
"remote-api": {
"transport_type": "streamable_http",
"url": "http://api.example.com:8080/mcp",
"headers": {
"Authorization": "Bearer abc123token"
}
}
}
}
{
"mcpServers": {
"oauth-server": {
"transport_type": "streamable_http",
"auth": {
"method": "oauth"
},
"url": "http://oauth-server.com:8080/mcp"
}
}
}
Start the CLI - ensure your API key is exported or create .env
file:
# Basic MCP client
python examples/basic.py
# Or advanced MCP CLI
python examples/run.py
# Run all tests with verbose output
pytest tests/ -v
# Run specific test file
pytest tests/test_specific_file.py -v
# Run tests with coverage report
pytest tests/ --cov=src --cov-report=term-missing
tests/
βββ unit/ # Unit tests for individual components
-
Installation
# Clone the repository git clone https://github.com/Abiorh001/mcp_omni_connect.git cd mcp_omni_connect # Create and activate virtual environment uv venv source .venv/bin/activate # Install dependencies uv sync
-
Configuration
# Set up environment variables echo "LLM_API_KEY=your_api_key_here" > .env # Configure your servers in servers_config.json
-
Start Client
uv run examples/run.py
Or:
python examples/run.py
Use Case | Choose | Best For |
---|---|---|
Build custom AI apps | OmniAgent | Web apps, automation, custom workflows |
Connect to MCP servers | MCP CLI | Daily workflow, server management, debugging |
Learn & experiment | Examples | Understanding patterns, proof of concepts |
Production deployment | Both | Full-featured AI applications |
Perfect for: Custom applications, automation, web apps
# Study the examples to learn patterns:
python examples/basic.py # Simple MCP client
python examples/omni_agent_example.py # Complete OmniAgent demo
python examples/background_agent_example.py # Self-flying agents
python examples/web_server.py # Web interface
# Then build your own using the patterns!
Perfect for: Daily workflow, server management, debugging
# Basic MCP client - Simple connection patterns
python examples/basic.py
# World-class MCP client with advanced features
python examples/run.py
# Features: Connect to MCP servers, agentic modes, advanced memory
Perfect for: Learning, understanding patterns, experimentation
# Comprehensive testing interface - Study 12+ EXAMPLE tools
python examples/run_omni_agent.py --mode cli
# Study this file to see tool registration patterns and CLI features
# Contains many examples of how to create custom tools
π‘ Pro Tip: Most developers use both paths - the MCP CLI for daily workflow and OmniAgent for building custom solutions!
One of OmniAgent's most powerful features is the ability to register your own Python functions as AI tools. The agent can then intelligently use these tools to complete tasks.
from mcpomni_connect.agents.tools.local_tools_registry import ToolRegistry
# Create tool registry
tool_registry = ToolRegistry()
# Register your custom tools with simple decorator
@tool_registry.register_tool("calculate_area")
def calculate_area(length: float, width: float) -> str:
"""Calculate the area of a rectangle."""
area = length * width
return f"Area of rectangle ({length} x {width}): {area} square units"
@tool_registry.register_tool("analyze_text")
def analyze_text(text: str) -> str:
"""Analyze text and return word count and character count."""
words = len(text.split())
chars = len(text)
return f"Analysis: {words} words, {chars} characters"
@tool_registry.register_tool("system_status")
def get_system_status() -> str:
"""Get current system status information."""
import platform
import time
return f"System: {platform.system()}, Time: {time.strftime('%Y-%m-%d %H:%M:%S')}"
# Use tools with OmniAgent
agent = OmniAgent(
name="my_agent",
local_tools=tool_registry, # Your custom tools!
# ... other config
)
# Now the AI can use your tools!
result = await agent.run("Calculate the area of a 10x5 rectangle and tell me the current system time")
No built-in tools - You create exactly what you need! Study these EXAMPLE patterns from run_omni_agent.py
:
Mathematical Tools Examples:
@tool_registry.register_tool("calculate_area")
def calculate_area(length: float, width: float) -> str:
area = length * width
return f"Area: {area} square units"
@tool_registry.register_tool("analyze_numbers")
def analyze_numbers(numbers: str) -> str:
num_list = [float(x.strip()) for x in numbers.split(",")]
return f"Count: {len(num_list)}, Average: {sum(num_list)/len(num_list):.2f}"
System Tools Examples:
@tool_registry.register_tool("system_info")
def get_system_info() -> str:
import platform
return f"OS: {platform.system()}, Python: {platform.python_version()}"
File Tools Examples:
@tool_registry.register_tool("list_files")
def list_directory(path: str = ".") -> str:
import os
files = os.listdir(path)
return f"Found {len(files)} items in {path}"
1. Simple Function Tools:
@tool_registry.register_tool("weather_check")
def check_weather(city: str) -> str:
"""Get weather information for a city."""
# Your weather API logic here
return f"Weather in {city}: Sunny, 25Β°C"
2. Complex Analysis Tools:
@tool_registry.register_tool("data_analysis")
def analyze_data(data: str, analysis_type: str = "summary") -> str:
"""Analyze data with different analysis types."""
import json
try:
data_obj = json.loads(data)
if analysis_type == "summary":
return f"Data contains {len(data_obj)} items"
elif analysis_type == "detailed":
# Complex analysis logic
return "Detailed analysis results..."
except:
return "Invalid data format"
3. File Processing Tools:
@tool_registry.register_tool("process_file")
def process_file(file_path: str, operation: str) -> str:
"""Process files with different operations."""
try:
if operation == "read":
with open(file_path, 'r') as f:
content = f.read()
return f"File content (first 100 chars): {content[:100]}..."
elif operation == "count_lines":
with open(file_path, 'r') as f:
lines = len(f.readlines())
return f"File has {lines} lines"
except Exception as e:
return f"Error processing file: {e}"
MCPOmni Connect provides advanced memory capabilities through vector databases for intelligent, semantic search and long-term memory.
# Enable vector memory - you MUST choose a provider
ENABLE_VECTOR_DB=true
# Option 1: Qdrant (recommended)
OMNI_MEMORY_PROVIDER=qdrant-remote
QDRANT_HOST=localhost
QDRANT_PORT=6333
# Option 2: ChromaDB Remote
OMNI_MEMORY_PROVIDER=chroma-remote
CHROMA_HOST=localhost
CHROMA_PORT=8000
- Vector DB disabled: ~1-2 seconds startup
- Vector DB enabled: ~30-60 seconds startup (sentence transformer model loading)
- Memory usage: ~2-4GB (includes sentence transformer model)
- Recommendation: Enable during development setup, then it's fast for all subsequent usage
1. Qdrant Remote (Recommended Default)
# Install and run Qdrant
docker run -p 6333:6333 qdrant/qdrant
# Configure
ENABLE_VECTOR_DB=true
OMNI_MEMORY_PROVIDER=qdrant-remote
QDRANT_HOST=localhost
QDRANT_PORT=6333
2. ChromaDB Remote
# Install and run ChromaDB server
docker run -p 8000:8000 chromadb/chroma
# Configure
ENABLE_VECTOR_DB=true
OMNI_MEMORY_PROVIDER=chroma-remote
CHROMA_HOST=localhost
CHROMA_PORT=8000
3. ChromaDB Cloud
ENABLE_VECTOR_DB=true
OMNI_MEMORY_PROVIDER=chroma-cloud
CHROMA_TENANT=your_tenant
CHROMA_DATABASE=your_database
CHROMA_API_KEY=your_api_key
- Local ChromaDB support has been removed for performance reasons
- You must configure a vector database provider - no automatic fallback
- If no provider is configured or fails: Vector DB will be disabled
- This ensures fast startup when vector DB is not needed
- Long-term Memory: Persistent storage across sessions
- Episodic Memory: Context-aware conversation history
- Semantic Search: Find relevant information by meaning, not exact text
- Multi-session Context: Remember information across different conversations
- Automatic Summarization: Intelligent memory compression for efficiency
Monitor and optimize your AI agents with production-grade observability:
-
Sign up for Opik (Free & Open Source):
- Visit: https://www.comet.com/signup?from=llm
- Create your account and get your API key and workspace name
-
Add to your
.env
file (see Environment Variables above):OPIK_API_KEY=your_opik_api_key_here OPIK_WORKSPACE=your_opik_workspace_name
Once configured, MCPOmni Connect automatically tracks:
- π₯ LLM Call Performance: Execution time, token usage, response quality
- π οΈ Tool Execution Traces: Which tools were used and how long they took
- π§ Memory Operations: Vector DB queries, memory retrieval performance
- π€ Agent Workflow: Complete trace of multi-step agent reasoning
- π System Bottlenecks: Identify exactly where time is spent
- Performance Optimization: See which LLM calls or tools are slow
- Cost Monitoring: Track token usage and API costs
- Debugging: Understand agent decision-making processes
- Production Monitoring: Real-time observability for deployed agents
- Zero Code Changes: Works automatically with existing agents
Agent Execution Trace:
βββ agent_execution: 4.6s
β βββ tools_registry_retrieval: 0.02s β
β βββ memory_retrieval_step: 0.08s β
β βββ llm_call: 4.5s β οΈ (bottleneck identified!)
β βββ response_parsing: 0.01s β
β βββ action_execution: 0.03s β
π‘ Pro Tip: Opik is completely optional. If you don't set the credentials, MCPOmni Connect works normally without tracing.
Memory Store Management:
# Switch between memory backends
/memory_store:in_memory # Fast in-memory storage (default)
/memory_store:redis # Redis persistent storage
/memory_store:database # SQLite database storage
/memory_store:database:postgresql://user:pass@host/db # PostgreSQL
/memory_store:database:mysql://user:pass@host/db # MySQL
# Memory strategy configuration
/memory_mode:sliding_window:10 # Keep last 10 messages
/memory_mode:token_budget:5000 # Keep under 5000 tokens
Event Store Management:
# Switch between event backends
/event_store:in_memory # Fast in-memory events (default)
/event_store:redis_stream # Redis Streams for persistence
Enhanced Commands:
# Memory operations
/history # Show conversation history
/clear_history # Clear conversation history
/save_history <file> # Save history to file
/load_history <file> # Load history from file
# Server management
/add_servers:<config.json> # Add servers from config
/remove_server:<server_name> # Remove specific server
/refresh # Refresh server capabilities
# Debugging and monitoring
/debug # Toggle debug mode
/api_stats # Show API usage statistics
The MCPOmni Connect CLI is the most advanced MCP client available, providing professional-grade MCP functionality with enhanced memory, event management, and agentic modes:
# Launch the advanced MCP CLI
python examples/run.py
# Core MCP client commands:
/tools # List all available tools
/prompts # List all available prompts
/resources # List all available resources
/prompt:<name> # Execute a specific prompt
/resource:<uri> # Read a specific resource
/subscribe:<uri> # Subscribe to resource updates
/query <your_question> # Ask questions using tools
# Advanced platform features:
/memory_store:redis # Switch to Redis memory
/event_store:redis_stream # Switch to Redis events
/add_servers:<config.json> # Add MCP servers dynamically
/remove_server:<name> # Remove MCP server
/mode:auto # Switch to autonomous agentic mode
/mode:orchestrator # Switch to multi-server orchestration
MCPOmni Connect is not just a CLI toolβit's also a powerful Python library. OmniAgent consolidates everything - you no longer need to manually manage MCP clients, configurations, and agents separately!
OmniAgent automatically includes MCP client functionality - just specify your MCP servers and you're ready to go:
from mcpomni_connect.omni_agent import OmniAgent
from mcpomni_connect.memory_store.memory_router import MemoryRouter
from mcpomni_connect.events.event_router import EventRouter
from mcpomni_connect.agents.tools.local_tools_registry import ToolRegistry
# Create tool registry for custom tools
tool_registry = ToolRegistry()
@tool_registry.register_tool("analyze_data")
def analyze_data(data: str) -> str:
"""Analyze data and return insights."""
return f"Analysis complete: {len(data)} characters processed"
# OmniAgent automatically handles MCP connections + your tools
agent = OmniAgent(
name="my_app_agent",
system_instruction="You are a helpful assistant with access to MCP servers and custom tools.",
model_config={
"provider": "openai",
"model": "gpt-4o",
"temperature": 0.7
},
# Your custom local tools
local_tools=tool_registry,
# MCP servers - automatically connected!
mcp_tools=[
{
"name": "filesystem",
"transport_type": "stdio",
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-filesystem", "/home"]
},
{
"name": "github",
"transport_type": "streamable_http",
"url": "http://localhost:8080/mcp",
"headers": {"Authorization": "Bearer your-token"}
}
],
memory_store=MemoryRouter(memory_store_type="redis"),
event_router=EventRouter(event_store_type="in_memory")
)
# Use in your app - gets both MCP tools AND your custom tools!
result = await agent.run("List files in the current directory and analyze the filenames")
If you need the old manual approach for some reason:
OmniAgent makes building APIs incredibly simple. See examples/web_server.py
for a complete FastAPI example:
from fastapi import FastAPI
from mcpomni_connect.omni_agent import OmniAgent
app = FastAPI()
agent = OmniAgent(...) # Your agent setup from above
@app.post("/chat")
async def chat(message: str, session_id: str = None):
result = await agent.run(message, session_id)
return {"response": result['response'], "session_id": result['session_id']}
@app.get("/tools")
async def get_tools():
# Returns both MCP tools AND your custom tools automatically
return agent.get_available_tools()
Key Benefits:
- One OmniAgent = MCP + Custom Tools + Memory + Events
- Automatic tool discovery from all connected MCP servers
- Built-in session management and conversation history
- Real-time event streaming for monitoring
- Easy integration with any Python web framework
π‘ Quick Reference: See
examples/llm_usage-config.json
for all LLM provider configurations (Anthropic, Groq, Azure, Ollama, OpenRouter, etc.)
{
"AgentConfig": {
"tool_call_timeout": 30,
"max_steps": 15,
"request_limit": 1000,
"total_tokens_limit": 100000
},
"LLM": {
"provider": "openai",
"model": "gpt-4",
"temperature": 0.5,
"max_tokens": 5000,
"max_context_length": 30000,
"top_p": 0
},
"mcpServers": {
"ev_assistant": {
"transport_type": "streamable_http",
"auth": {
"method": "oauth"
},
"url": "http://localhost:8000/mcp"
},
"sse-server": {
"transport_type": "sse",
"url": "http://localhost:3000/sse",
"headers": {
"Authorization": "Bearer token"
},
"timeout": 60,
"sse_read_timeout": 120
},
"streamable_http-server": {
"transport_type": "streamable_http",
"url": "http://localhost:3000/mcp",
"headers": {
"Authorization": "Bearer token"
},
"timeout": 60,
"sse_read_timeout": 120
}
}
}
{
"LLM": {
"provider": "anthropic",
"model": "claude-3-5-sonnet-20241022",
"temperature": 0.7,
"max_tokens": 4000,
"max_context_length": 200000,
"top_p": 0.95
}
}
{
"LLM": {
"provider": "groq",
"model": "llama-3.1-8b-instant",
"temperature": 0.5,
"max_tokens": 2000,
"max_context_length": 8000,
"top_p": 0.9
}
}
{
"LLM": {
"provider": "azureopenai",
"model": "gpt-4",
"temperature": 0.7,
"max_tokens": 2000,
"max_context_length": 100000,
"top_p": 0.95,
"azure_endpoint": "https://your-resource.openai.azure.com",
"azure_api_version": "2024-02-01",
"azure_deployment": "your-deployment-name"
}
}
{
"LLM": {
"provider": "ollama",
"model": "llama3.1:8b",
"temperature": 0.5,
"max_tokens": 5000,
"max_context_length": 100000,
"top_p": 0.7,
"ollama_host": "http://localhost:11434"
}
}
{
"LLM": {
"provider": "openrouter",
"model": "anthropic/claude-3.5-sonnet",
"temperature": 0.7,
"max_tokens": 4000,
"max_context_length": 200000,
"top_p": 0.95
}
}
MCPOmni Connect supports multiple authentication methods for secure server connections:
{
"server_name": {
"transport_type": "streamable_http",
"auth": {
"method": "oauth"
},
"url": "http://your-server/mcp"
}
}
{
"server_name": {
"transport_type": "streamable_http",
"headers": {
"Authorization": "Bearer your-token-here"
},
"url": "http://your-server/mcp"
}
}
{
"server_name": {
"transport_type": "streamable_http",
"headers": {
"X-Custom-Header": "value",
"Authorization": "Custom-Auth-Scheme token"
},
"url": "http://your-server/mcp"
}
}
MCPOmni Connect supports dynamic server configuration through commands:
# Add one or more servers from a configuration file
/add_servers:path/to/config.json
The configuration file can include multiple servers with different authentication methods:
{
"new-server": {
"transport_type": "streamable_http",
"auth": {
"method": "oauth"
},
"url": "http://localhost:8000/mcp"
},
"another-server": {
"transport_type": "sse",
"headers": {
"Authorization": "Bearer token"
},
"url": "http://localhost:3000/sse"
}
}
# Remove a server by its name
/remove_server:server_name
/tools
- List all available tools across servers/prompts
- View available prompts/prompt:<name>/<args>
- Execute a prompt with arguments/resources
- List available resources/resource:<uri>
- Access and analyze a resource/debug
- Toggle debug mode/refresh
- Update server capabilities/memory
- Toggle Redis memory persistence (on/off)/mode:auto
- Switch to autonomous agentic mode/mode:chat
- Switch back to interactive chat mode/add_servers:<config.json>
- Add one or more servers from a configuration file/remove_server:<server_name>
- Remove a server by its name
# Enable Redis memory persistence
/memory
# Check memory status
Memory persistence is now ENABLED using Redis
# Disable memory persistence
/memory
# Check memory status
Memory persistence is now DISABLED
# Switch to autonomous mode
/mode:auto
# System confirms mode change
Now operating in AUTONOMOUS mode. I will execute tasks independently.
# Switch back to chat mode
/mode:chat
# System confirms mode change
Now operating in CHAT mode. I will ask for approval before executing tasks.
-
Chat Mode (Default)
- Requires explicit approval for tool execution
- Interactive conversation style
- Step-by-step task execution
- Detailed explanations of actions
-
Autonomous Mode
- Independent task execution
- Self-guided decision making
- Automatic tool selection and chaining
- Progress updates and final results
- Complex task decomposition
- Error handling and recovery
-
Orchestrator Mode
- Advanced planning for complex multi-step tasks
- Strategic delegation across multiple MCP servers
- Intelligent agent coordination and communication
- Parallel task execution when possible
- Dynamic resource allocation
- Sophisticated workflow management
- Real-time progress monitoring across agents
- Adaptive task prioritization
# List all available prompts
/prompts
# Basic prompt usage
/prompt:weather/location=tokyo
# Prompt with multiple arguments depends on the server prompt arguments requirements
/prompt:travel-planner/from=london/to=paris/date=2024-03-25
# JSON format for complex arguments
/prompt:analyze-data/{
"dataset": "sales_2024",
"metrics": ["revenue", "growth"],
"filters": {
"region": "europe",
"period": "q1"
}
}
# Nested argument structures
/prompt:market-research/target=smartphones/criteria={
"price_range": {"min": 500, "max": 1000},
"features": ["5G", "wireless-charging"],
"markets": ["US", "EU", "Asia"]
}
- Argument Validation: Automatic type checking and validation
- Default Values: Smart handling of optional arguments
- Context Awareness: Prompts can access previous conversation context
- Cross-Server Execution: Seamless execution across multiple MCP servers
- Error Handling: Graceful handling of invalid arguments with helpful messages
- Dynamic Help: Detailed usage information for each prompt
The client intelligently:
- Chains multiple tools together
- Provides context-aware responses
- Automatically selects appropriate tools
- Handles errors gracefully
- Maintains conversation context
- Unified Model Access
- Single interface for 100+ models across all major providers
- Automatic provider detection and routing
- Consistent API regardless of underlying provider
- Native function calling for compatible models
- ReAct Agent fallback for models without function calling
- Supported Providers
- OpenAI: GPT-4, GPT-3.5, and all model variants
- Anthropic: Claude 3.5 Sonnet, Claude 3 Haiku, Claude 3 Opus
- Google: Gemini Pro, Gemini Flash, PaLM models
- Groq: Ultra-fast inference for Llama, Mixtral, Gemma
- DeepSeek: DeepSeek-V3, DeepSeek-Coder, and specialized models
- Azure OpenAI: Enterprise-grade OpenAI models
- OpenRouter: Access to 200+ models from various providers
- Ollama: Local model execution with privacy
- Advanced Features
- Automatic model capability detection
- Dynamic tool execution based on model features
- Intelligent fallback mechanisms
- Provider-specific optimizations
MCPOmni Connect now provides advanced controls and visibility over your API usage and resource limits.
Use the /api_stats
command to see your current usage:
/api_stats
This will display:
- Total tokens used
- Total requests made
- Total response tokens
- Number of requests
You can set limits to automatically stop execution when thresholds are reached:
- Total Request Limit: Set the maximum number of requests allowed in a session.
- Total Token Usage Limit: Set the maximum number of tokens that can be used.
- Tool Call Timeout: Set the maximum time (in seconds) a tool call can take before being terminated.
- Max Steps: Set the maximum number of steps the agent can take before stopping.
You can configure these in your servers_config.json
under the AgentConfig
section:
"AgentConfig": {
"tool_call_timeout": 30, // Tool call timeout in seconds
"max_steps": 15, // Max number of steps before termination
"request_limit": 1000, // Max number of requests allowed
"total_tokens_limit": 100000 // Max number of tokens allowed
}
- When any of these limits are reached, the agent will automatically stop running and notify you.
# Check your current API usage and limits
/api_stats
# Set a new request limit (example)
# (This can be done by editing servers_config.json or via future CLI commands)
# Example of automatic tool chaining if the tool is available in the servers connected
User: "Find charging stations near Silicon Valley and check their current status"
# Client automatically:
1. Uses Google Maps API to locate Silicon Valley
2. Searches for charging stations in the area
3. Checks station status through EV network API
4. Formats and presents results
# Automatic resource processing
User: "Analyze the contents of /path/to/document.pdf"
# Client automatically:
1. Identifies resource type
2. Extracts content
3. Processes through LLM
4. Provides intelligent summary
π¨ Most Common Issues: Check Quick Fixes below first!
π For comprehensive setup help: See βοΈ Configuration Guide | π§ Vector DB Setup
Error | Quick Fix |
---|---|
Error: Invalid API key |
Check your .env file: LLM_API_KEY=your_actual_key |
ModuleNotFoundError: mcpomni_connect |
Run: uv add mcpomni-connect or pip install mcpomni-connect |
Connection refused |
Ensure MCP server is running before connecting |
ChromaDB not available |
Install: pip install chromadb - See Vector DB Setup |
Redis connection failed |
Install Redis or use in-memory mode (default) |
Tool execution failed |
Check tool permissions and arguments |
-
Connection Issues
Error: Could not connect to MCP server
- Check if the server is running
- Verify server configuration in
servers_config.json
- Ensure network connectivity
- Check server logs for errors
- See Transport Types & Authentication for detailed setup
-
API Key Issues
Error: Invalid API key
- Verify API key is correctly set in
.env
- Check if API key has required permissions
- Ensure API key is for correct environment (production/development)
- See Configuration Files Overview for correct setup
- Verify API key is correctly set in
-
Redis Connection
Error: Could not connect to Redis
- Verify Redis server is running
- Check Redis connection settings in
.env
- Ensure Redis password is correct (if configured)
-
Tool Execution Failures
Error: Tool execution failed
- Check tool availability on connected servers
- Verify tool permissions
- Review tool arguments for correctness
Enable debug mode for detailed logging:
/debug
- First: Check the Quick Fixes above
- Examples: Study working examples in the
examples/
directory - Issues: Search GitHub Issues for similar problems
- New Issue: Create a new issue with detailed information
We welcome contributions! See our Contributing Guide for details.
Complete documentation is available at: MCPOmni Connect Docs
To build documentation locally:
./docs.sh serve # Start development server at http://127.0.0.1:8080
./docs.sh build # Build static documentation
This project is licensed under the MIT License - see the LICENSE file for details.
- Author: Abiola Adeshina
- Email: abiolaadedayo1993@gmail.com
- GitHub Issues: Report a bug
Built with β€οΈ by the MCPOmni Connect Team