Skip to content

Document Neo-Hookean model #608

@mvanzulli

Description

@mvanzulli

Considering this strain energy function is:

$$\Psi(\mathbf{C}) = \frac{\mu}{2}(I_1 -3) + 1/D (J -1)^2$$

then Cosserat is:

$$\mathbf{S} = 2 \frac{\partial \Psi }{\partial \mathbf{C}} = \mu (I_{3,3}) + \frac{2}{D}(J-1) J C^{-T}$$

but in ONSAS we have:

S       = shear * ( eye(3) - invC ) + bulk * ( J * (J-1)* invC) ;

Useful identities:

$$J = \sqrt(det(\mathbf{C}))$$ $$\frac{\partial J}{\partial \mathbf{C}} = \frac{J \mathbf{C}^{-T}}{2}$$ $$\frac{\partial I_1}{\partial \mathbf{C}} = I_{3,3}$$

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions