Skip to content

Benchmark effect of merging query and keys matrices in transformers #3

@Ayushk4

Description

@Ayushk4

For certain architectures (like GPTJ and LLaMa), it may be possible to replace Query $Q$ and Key $K$ matrices by a single matrix - saving on 1 out of seven/eight matrix multiplications in the transformer. I don't see an obvious way of having this for GPT-NeoX and OPT.

Take a standard benchmark, run the model before and after merging Query and Key matrices.

---------- Following are the details: (How to write latex in GitHub?)----------
.T() denotes transpose

Consider the input representation $X = {x1, ... xi, ... xj, ... xn}$.
qi = MatMul(Q, xi)
kj = MatMul(K, xj)

score_i,j = MatMul(qi.T(), kj)
= MatMul( MatMul(Q, xi).T(), MatMul(K, xj) )
= MatMul( MatMul(xi.T(), Q.T()), MatMul(K, xj) )
= MatrixChainMul(xi.T(), Q.T(), K, xj)

let QKMerge = MatMul(Q.T(), K)

score_i,j = MatrixChainMul(xi.T(), QKMerge, xj)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions