This repo contains the 3rd place and the most innovative solution in the 2022 NeurIPS Driving SMARTS Competition. The details of the framework and the prediction network are given here.
conda create -n smarts python=3.8
conda activate smarts
Install SMARTS simulator.
pip install "smarts[camera-obs] @ git+https://github.com/huawei-noah/SMARTS.git@comp-1"
conda install pytorch==1.12.0 -c pytorch
Run train.py
in the train
folder. Leave the arguments vacant to use the default setting.
python train.py --epochs 1000 --batch_size 64 --learning_rate 2e-4 --device cuda
Run test.py
in the submission
folder to test the framework with our pretrained model. You can set --envision
to visualize the performance of the framework in envision or set --sumo
to visualize in sumo.
python test.py --episodes 50 --envisoin
To visualize in Envision (some bugs exist in showing the road map), you need to manually start the envision server and then go to http://localhost:8081/
.
scl envision start -p 8081